
MaMaDroid: Detecting Android Malware by Building

Markov Chains of Behavioral Models (Extended Version)

LUCKY ONWUZURIKE and ENRICO MARICONTI, University College London
PANAGIOTIS ANDRIOTIS, University of the West of England
EMILIANO DE CRISTOFARO and GORDON ROSS, University College London
GIANLUCA STRINGHINI, Boston University

As Android has become increasingly popular, so has malware targeting it, thus pushing the research community
to propose different detection techniques. However, the constant evolution of the Android ecosystem, and of
malware itself, makes it hard to design robust tools that can operate for long periods of time without the need
for modifications or costly re-training. Aiming to address this issue, we set to detect malware from a behavioral
point of view, modeled as the sequence of abstracted API calls. We introduce MaMaDroid, a static-analysis
based system that abstracts the API calls performed by an app to their class, package, or family, and builds a
model from their sequences obtained from the call graph of an app as Markov chains. This ensures that the
model is more resilient to API changes and the features set is of manageable size. We evaluate MaMaDroid
using a dataset of 8.5K benign and 35.5K malicious apps collected over a period of six years, showing that it
effectively detects malware (with up to 0.99 F-measure) and keeps its detection capabilities for long periods of
time (up to 0.87 F-measure two years after training). We also show that MaMaDroid remarkably outperforms
DroidAPIMiner, a state-of-the-art detection system that relies on the frequency of (raw) API calls. Aiming to
assess whether MaMaDroid?s effectiveness mainly stems from the API abstraction or from the sequencing
modeling, we also evaluate a variant of it that uses frequency (instead of sequences), of abstracted API calls.
We find that it is not as accurate, failing to capture maliciousness when trained on malware samples that
include API calls that are equally or more frequently used by benign apps.

1 INTRODUCTION

Malware running on mobile devices can be particularly lucrative, as it can enable attackers to
defeat two-factor authentication for financial and banking systems [64] and/or trigger the leakage
of sensitive information [29]. As a consequence, the number of malware samples has skyrocketed
in recent years and, due to its increased popularity, cybercriminals have increasingly targeted
the Android ecosystem [18]. Detecting malware on mobile devices presents additional challenges
compared to desktop/laptop computers; smartphones have limited battery life, making it impossible
to use traditional approaches requiring constant scanning and complex computation [53]. Thus,
Android malware detection is typically performed in a centralized fashion, i.e., by analyzing apps
submitted to the Play Store using Bouncer [48]. However, many malicious apps manage to avoid
detection [46, 69], and manufacturers as well as users can install apps that come from third parties,
whom may not perform any malware checks at all [81].

As a result, the research community has proposed a number of techniques to detect malware
on Android. Previous work has often relied on the permissions requested by apps [21, 58], using
models built from malware samples. This, however, is prone to false positives, since there are often
legitimate reasons for benign apps to request permissions classified as dangerous [21]. Another
approach, used by DroidAPIMiner [1], is to perform classification based on API calls frequently
used by malware. However, relying on the most common calls observed during training prompts
the need for constant retraining, due to the evolution of malware and the Android API alike. For
instance, “old” calls are often deprecated with new API releases, so malware developers may switch
to different calls to perform similar actions.

This is an extended work of the authors’ prior publication presented at NDSS 2017 [44]. Work done while Gianluca Stringhini
was at UCL. Submitted: November 2017, Accepted: February 2019.
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MaMaDroid. In this paper, we present a novel malware detection system for Android that relies on
the sequence of abstracted API calls performed by an app rather than their use or frequency, aiming
to capture the behavioral model of the app. We design MaMaDroid to abstract API calls to either
the class name (e.g., java.lang.Throwable) of the call or its package name (e.g., java.lang) or its
source (e.g., java, android, google), which we refer to as family.

Abstraction provides resilience to API changes in the Android framework as families and packages
are added and removed less frequently than single API calls. At the same time, this does not abstract
away the behavior of an app. For instance, packages include classes and interfaces used to perform
similar operations on similar objects, so we can model the types of operations from the package
name alone. For example, the java.io package is used for system I/O and access to the file system,
even though there are different classes and interfaces provided by the package for such operations.
After abstracting the calls, MaMaDroid analyzes the sequence of API calls performed by the

app aiming to model the app’s behavior using Markov chains. Our intuition is that malware
may use calls for different operations, and in an order different from benign apps. For example,
android.media.MediaRecorder can be used by any app that has permission to record audio, but the
call sequencemay reveal that malware only uses calls from this class after calls to getRunningTasks(),
which allows recording conversations [78], as opposed to benign apps where calls from the class
may appear in any order. Relying on the sequence of abstracted calls allows us to model behavior in
a more complex way than previous work, which only looked at the presence or absence of certain
API calls or permissions [1, 4], while still keeping the problem tractable [36]. MaMaDroid then
builds a statistical model to represent the transitions between the API calls performed by an app as
Markov chains, and uses them to extract features. Finally, it classifies an app as either malicious or
benign using the features it extracts from the app.

Evaluation. We present a detailed evaluation of the classification accuracy (using F-measure, Pre-
cision, and Recall) and runtime performance of MaMaDroid using a dataset of almost 44K apps
(8.5K benign and 35.5K malware samples). We include a mix of older and newer apps, from October
2010 to May 2016, verifying that our model is robust to changes in Android malware samples
and APIs. Our experimental analysis shows that MaMaDroid can effectively model both benign
and malicious Android apps, and efficiently classify them. Compared to other systems such as
DroidAPIMiner [1], our approach allows us to account for changes in the Android API, without
the need to frequently retrain the classifier. Also, to the best of our knowledge, our evaluation is
done on one of the largest Android malware datasets used in a research paper.
To assess the impact of abstraction and Markov chain modeling on MaMaDroid, we not only

compare to DroidAPIMiner, but also build a variant (called FAM) that still abstracts API calls but
instead of building a model from the sequence of calls, it does so on the frequency of calls, similar
to DroidAPIMiner.
Overall, we find that MaMaDroid can effectively detect unknown malware samples not only

in the “present,” (with F-measure up to 0.99) but also consistently over the years (i.e., when the
system is trained on older samples and evaluated over newer ones), as it keeps an average detection
accuracy, evaluated in terms of F-measure, of 0.87 after one year and 0.75 after two years (as opposed
to 0.46 and 0.42 achieved by DroidAPIMiner [1] and 0.81 and 0.76 by FAM). We also highlight
that when the system is not efficient anymore (when the test set is newer than the training set by
more than two years), it is as a result of MaMaDroid having low Recall, but maintaining high
Precision. We also do the opposite, i.e., training on newer samples and verifying that the system
can still detect old malware. This is particularly important as it shows that MaMaDroid can detect
newer threats, while still identifying malware samples that have been in the wild for some time.
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Summary of Contributions. This paper makes several contributions. First, we introduce a novel
malware detection approach implemented in a tool called MaMaDroid, by abstracting API calls
to their class, package, and family, and model the behavior of the apps through the sequences of
API calls as Markov chains. Second, we can detect unknown samples from the same year as those
used in training with an F-measure of 0.99, and also years after training the system, meaning that
MaMaDroid does not need continuous re-training. Compared to previous work, MaMaDroid
achieves higher accuracy with reasonably fast running times, while also being more robust to
evolution in malware development and changes in the Android API. Third, by abstracting API
calls and using frequency analysis we still perform better than a system that also uses frequency
analysis but without abstraction (DroidAPIMiner). Fourth, we explore the detection performance
of a finer-grained abstraction and show that abstracting to classes does not perform better than
abstracting to packages. Finally, we make the code of MaMaDroid as well as the hash of the
samples in our datasets publicly available1 and, on request, the apk samples, parsed call graphs,
and abstracted sequences of API calls on which MaMaDroid has been evaluated on.
Note that this is an extended work of our prior publication presented at NDSS 2017 [44];

compared to that paper, here we make two main additional contributions: (1) We present and
evaluate a finer-grained level of API call abstraction—to classes, rather than packages or families;
(2) We introduce and assess a modeling approach based on the frequency rather than the sequences
of abstracted API calls. We compare this to that presented in [44] as well as to DroidAPIMiner [1],
as the latter also uses the frequency of non-abstracted API calls.
Paper Organization. Next section presents MaMaDroid, then, Section 3 introduces the datasets
used throughout the paper. In Section 4, we evaluate MaMaDroid in family and package modes,
while in Section 5, we explore the effectiveness of finer-grained abstraction (i.e., class mode). In
Section 6, we present and evaluate the variant using a frequency analysis model (FAM), while we
analyze runtime performances in Section 7. Section 8 further discusses our results as well as its
limitations. After reviewing related work in Section 9, the paper concludes in Section 10.

2 THE MAMADROID SYSTEM

In this section, we introduce MaMaDroid, an Android malware detection system that relies on
the transitions between different API calls performed by Android apps.

2.1 Overview

MaMaDroid builds a model of the sequence of API calls as Markov chains, which are in turn
used to extract features for machine learning algorithms to classify apps as benign or malicious.
Abstraction. MaMaDroid does not actually use the raw API calls, but abstracts each call to its
family, package, or class. For instance, the API call getMessage() in Fig. 1 is parsed to, respectively,
java, java.lang, and java.lang.Throwable.

package︷      ︸︸      ︷
java︸︷︷︸
family

.lang.Throwable:

︸                       ︷︷                       ︸
Class

String getMessage()

Fig. 1. An example of an API call and its family, package, and class.

1https://bitbucket.org/gianluca_students/mamadroid_code

3

https://bitbucket.org/gianluca_students/mamadroid_code


Call Graph 
Extraction (1)

Sequence
Extraction (2)

Markov Chain 
Modeling (3)

Classification 
(4)?

Fig. 2. Overview of MaMaDroid operation. In (1), it extracts the call graph from an Android app, next, it

builds the sequences of (abstracted) API calls from the call graph (2). In (3), the sequences of calls are used to

build a Markov chain and a feature vector for that app. Finally, classification is performed in (4), classifying

the app as benign or malicious.

Given the three different types of abstractions, MaMaDroid operates in one of three modes,
each using one of the types of abstraction. Naturally, we expect that the higher the abstraction, the
lighter the system is, although possibly less accurate.
Building Blocks. MaMaDroid’s operation goes through four phases as depicted in Fig. 2. First, we
extract the call graph from each app by using static analysis (1), then, we obtain the sequences of
API calls using all unique nodes after which we abstract each call to class, package, or family (2).
Next, we model the behavior of each app by constructing Markov chains from the sequences of
abstracted API calls for the app (3), with the transition probabilities used as the feature vector to
classify the app as either benign or malware using a machine learning classifier (4). In the rest of
this section, we discuss each of these steps in detail.

2.2 Call Graph Extraction

The first step in MaMaDroid is to extract the app’s call graph. We do so by performing static
analysis on the app’s apk, i.e., the standard Android archive file format containing all files, including
the Java bytecode, making up the app. We use a Java optimization and analysis framework, Soot [63],
to extract call graphs and FlowDroid [5] to ensure contexts and flows are preserved. Specifically,
we use FlowDroid, which is based on Soot, to create a dummy main method that serves as the main
entry point into the app under analysis (AUA). We do so because Android apps have multiple entry
points via which they can be started or invoked. Although apps have an activity launcher, which
serves as the main entry point, it is not mandatory that they are implemented (e.g., apps that run
as a service), hence, creating a single entry point allows us to reliably traverse the AUA. FlowDroid
also lets us model the information flow from sources and sinks using those provided by SuSi [55]
as well as callbacks.

To better clarify the different steps involved in our system, we employ throughout this section,
a “running example,” using a real-world malware sample. Fig. 3 lists a class extracted from the decom-
piled apk ofmalware disguised as amemory booster app (with package name com.g.o.speed.memboost),
which executes commands (rm, chmod, etc.) as root.2 To ease presentation, we focus on the portion
of the code executed in the try/catch block. The resulting call graph of the try/catch block is shown
in Fig. 4. For simplicity, we omit calls for object initialization, return types and parameters, as well
as implicit calls in a method. Additional calls that are invoked when getShell(true) is called are not
shown, except for the add() method that is directly called by the program code, as shown in Fig. 3.

2.3 Sequence Extraction and Abstraction

In its second phase, MaMaDroid extracts the sequences of API calls from the call graph and
abstracts the calls to one of three modes.
2https://www.hackread.com/ghost-push-android-malware/
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package com.fa.c;

import android.content.Context;

import android.os.Environment;

import android.util.Log;

import com.stericson.RootShell.execution.Command;

import com.stericson.RootShell.execution.Shell;

import com.stericson.RootTools.RootTools;

import java.io.File;

public class RootCommandExecutor {

public static boolean Execute(Context paramContext) {

paramContext = new Command(0, new String[] { "cat " + Environment.getExternalStorageDirectory().getAbsolutePath() + File.separator +

Utilities.GetWatchDogName(paramContext) + " > /data/" + Utilities.GetWatchDogName(paramContext), "cat " + Environment.

getExternalStorageDirectory().getAbsolutePath() + File.separator + Utilities.GetExecName(paramContext) + " > /data/" + Utilities.

GetExecName(paramContext), "rm " + Environment.getExternalStorageDirectory().getAbsolutePath() + File.separator + Utilities.

GetWatchDogName(paramContext), "rm " + Environment.getExternalStorageDirectory().getAbsolutePath() + File.separator + Utilities.

GetExecName(paramContext), "chmod 777 /data/" + Utilities.GetWatchDogName(paramContext), "chmod 777 /data/" + Utilities.

GetExecName(paramContext), "/data/" + Utilities.GetWatchDogName(paramContext) + " " + Utilities.GetDeviceInfoCommandLineArgs(

paramContext) + " /data/" + Utilities.GetExecName(paramContext) + " " + Environment.getExternalStorageDirectory().getAbsolutePath

() + File.separator + Utilities.GetExchangeFileName(paramContext) + " " + Environment.getExternalStorageDirectory().

getAbsolutePath() + File.separator + " " + Utilities.GetPhoneNumber(paramContext) });

try {

RootTools.getShell(true).add(paramContext);

return true;

}

catch (Exception paramContext) {

Log.d("CPS", paramContext.getMessage());

}

return false;

}

}

Fig. 3. Code from a malicious app (com.g.o.speed.memboost) executing commands as root.

Sequence Extraction. Since MaMaDroid uses static analysis, the graph obtained from Soot repre-
sents the sequence of functions that are potentially called by the app. However, each execution of
the app could take a specific branch of the graph and only execute a subset of the calls. For instance,
when running the code in Fig. 3 multiple times, the Execute method could be followed by different
calls, e.g., getShell() in the try block only or getShell() and then getMessage() in the catch block.
Thus, in this phase, MaMaDroid operates as follows. First, it identifies a set of entry nodes in

the call graph, i.e., nodes with no incoming edges (for example, the Execute method in the snippet
from Fig. 3 is the entry node if there is no incoming edge from any other call in the app). Then, it
enumerates the paths reachable from each entry node. The sets of all paths identified during this
phase constitutes the sequences of API calls which will be used to build a Markov chain behavioral
model and to extract features. In Fig. 5, we show the sequence of API calls obtained from the call
graph in Fig. 4. We also report in square brackets, the family, package, and class to which the call is
abstracted.
API Call Abstraction. Rather than analyzing raw API calls from the sequence of calls, we build
MaMaDroid to work at a higher level, and operate in one of three modes by abstracting each call
to its family, package, or class. The intuition is to make MaMaDroid resilient to API changes and
achieve scalability. In fact, our experiments presented in Section 3, show that, from a dataset of 44K
apps, we extract more than 10 million unique API calls, which, depending on the modeling approach
used to model each app, may result in the feature vectors being very sparse. While package and
class are already existing names for these abstraction levels, we use “family” to indicate an even
higher level of abstraction that does not currently exist. Our use of “family” refers to the “root”
names of the API packages and not to “malware families,” since we do not attempt to label each
malware sample to its family. When operating in family mode, we abstract an API call to one of
the nine Android “root” package names, i.e., android, google, java, javax, xml, apache, junit,
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com.fa.c.RootCommandExecutor:
Execute()

android.util.Log:
d()

com.stericson.RootTools.RootTools:
getShell()

java.lang.Throwable:
getMessage()

com.stericson.RootShell.execution.Shell:
add()

Fig. 4. Call graph of the API calls in the try/catch block of Fig. 3. (Return types and parameters are omitted

to ease presentation).

com.fa.c.RootCommandExecutor:
Execute()

[self-defined,
self-defined, self-defined]

com.fa.c.RootCommandExecutor:
Execute()

[self-defined,
self-defined, self-defined]

com.fa.c.RootCommandExecutor:
Execute()

[self-defined,
self-defined, self-defined]

com.stericson.RootTools.RootTools:
getShell()

[self-defined,
self-defined, self-defined]

com.stericson.RootShell.
execution.Shell: add()

[self-defined,
self-defined, self-defined]

android.util.Log:
d()

[android.util.Log,
android.util, android]

java.lang.Throwable:
getMessage()

[java.lang.Throwable,
java.lang, java]

Fig. 5. Sequence of API calls extracted from the call graphs in Fig. 4, with the corresponding class/package/-

family abstraction in square brackets.

json, dom, which correspond to the android.*, com.google.*, java.*, javax.*, org.xml.*, org.apache.*,
junit.*, org.json, and org.w3c.dom.* packages. Whereas in package mode, we abstract the call to
its package name using the list of Android packages from the documentation3 consisting of 243
packages as of API level 24 (the version as of September 2016), as well as 95 from the Google API.4
In class mode, we abstract each call to its class name using a whitelist of all class names in the
Android and Google APIs, which consists respectively, 4,855 and 1116 classes.5

In all modes, we abstract developer-defined (e.g., com.stericson.roottools) and obfuscated (e.g.
com.fa.a.b.d) API calls respectively, as self-defined and obfuscated. Note that we label an API
call as obfuscated if we cannot tell what its class implements, extends, or inherits, due to identifier
mangling. Overall, there are 11 (9+2) families, 340 (243+95+2) packages, and 5,973 (4,855+1,116+2)
possible classes.

2.4 Markov-chain Based Modeling

Next, MaMaDroid builds feature vectors, used for classification, based on the Markov chains
representing the sequences of abstracted API calls for an app. Before discussing this in detail, we
first review the basic concepts of Markov chains.
Markov Chains. Markov Chains are memoryless models where the probability of transitioning
from a state to another only depends on the current state [47]. They are often represented as a set
of nodes, each corresponding to a different state, and a set of edges connecting one node to another
labeled with the probability of that transition. The sum of all probabilities associated to all edges
from any node (including, if present, an edge going back to the node itself) is exactly 1. The set
3https://developer.android.com/reference/packages.html
4https://developers.google.com/android/reference/packages
5https://developer.android.com/reference/classes.html
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self-defined

java.lang.Throwable android.util.Log

0.5

0.25 0.25

(a)

self-defined

java.lang android.util

0.5

0.25 0.25

(b)

self-defined

java android

0.5

0.25 0.25

(c)

Fig. 6. Markov chains originating from the call sequence in Fig. 5 when using classes (a), packages (b) or

families (c).

of possible states of the Markov chain is denoted as S. If S j and Sk are two connected states, Pjk
denotes the probability of transition from S j to Sk . Pjk is given by the number of occurrences (O jk )
of state Sk after state S j , divided by O ji for all states i in the chain, i.e., Pjk =

O jk∑
i∈S O ji

.

Building the model. For each app, MaMaDroid takes as input the sequence of abstracted API
calls of that app (classes, packages or families, depending on the selected mode of operation), and
builds a Markov chain where each class/package/family is a state and the transitions represent the
probability of moving from one state to another. For each Markov chain, state S0 is the entry point
from which other calls are made in a sequence. As an example, Fig. 6 illustrates the Markov chains
built using classes, packages, and families, respectively, from the sequences reported in Fig. 5.

We argue that considering single transitions is more robust against attempts to evade detection
by inserting useless API calls in order to deceive signature-based systems [39]. In fact, MaMaDroid
considers all possible calls – i.e., all the branches originating from a node – in the Markov chain,
so adding calls would not significantly change the probabilities of transitions between nodes
(specifically, families, packages, or classes depending on the operational mode) for each app.

Feature Extraction. Next, we use the probabilities of transitioning from one state (abstracted call)
to another in the Markov chain as the feature vector of each app. States that are not present in a
chain are represented as 0 in the feature vector. The vector derived from the Markov chain depends
on the operational mode of MaMaDroid. With families, there are 11 possible states, thus 121
possible transitions in each chain, while, when abstracting to packages, there are 340 states and
115,600 possible transitions and with classes, there are 5,973 states therefore, 35,676,729 possible
transitions.
We also apply Principal Component Analysis (PCA) [33], which performs feature selection by

transforming the feature space into a new space made of components that are linear combinations
of the original features. The first component contains as much variance (i.e., amount of information)
as possible. The variance is given as a percentage of the total amount of information of the original
feature space. We apply PCA to the feature set in order to select the principal components, as PCA
transforms the feature space into a smaller one where the variance is represented with as few
components as possible, thus considerably reducing computation/memory complexity. Also, PCA
could reduce overfitting by only building the model from the principal components of the features
in our dataset which may in turn, improve the accuracy of the classification.
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Category Name Date Range #Samples #Samples #Samples

(API Calls) (Call Graph)

Benign oldbenign Apr 2013 – Nov 2013 5,879 5,837 5,572
newbenign Mar 2016 – Mar 2016 2,568 2,565 2,465

Total Benign: 8,447 8,402 8,037

Malware

drebin Oct 2010 – Aug 2012 5,560 5,546 5,512
2013 Jan 2013 – Jun 2013 6,228 6,146 6,091
2014 Jun 2013 – Mar 2014 15,417 14,866 13,804
2015 Jan 2015 – Jun 2015 5,314 5,161 4,451
2016 Jan 2016 – May 2016 2,974 2,802 2,555

Total Malware: 35,493 34,521 32,413

Table 1. Overview of the datasets used in our experiments.

2.5 Classification

The last step is to perform classification, i.e., labeling apps as either benign or malware. To this
end, we test MaMaDroid using different classification algorithms: Random Forests, 1-Nearest
Neighbor (1-NN), 3-Nearest Neighbor (3-NN), and Support Vector Machines (SVM). Note that since
both accuracy and speed are worse with SVM, we omit results obtained with it. On average, the
F-Measure with SVM using Radial Basis Functions (RBF) is 0.09 lower than with Random Forests,
and it is 5 times slower to train in family mode (which has a much smaller feature space) than
3-Nearest Neighbors (the slowest among the other classification methods).
Each model is trained using the feature vector obtained from the apps in a training sample.

Results are presented and discussed in Section 4, and have been validated by using 10-fold cross
validation. Note that due to the different number of features used in different modes, we use two
distinct configurations for the Random Forests algorithm. Specifically, when abstracting to families,
we use 51 trees with maximum depth 8, while, with classes and packages, we use 101 trees of
maximum depth 64. To tune Random Forests we follow the methodology applied in [6].

3 DATASET

In this section, we introduce the datasets used in the evaluation of MaMaDroid (presented later
in Section 4), which include 43,940 apk files, specifically, 8,447 benign and 35,493 malware samples.
We include a mix of older and newer apps, ranging from October 2010 to May 2016, as we aim to
verify that MaMaDroid is robust to changes in Android malware samples as well as APIs. Also, to
the best of our knowledge, our evaluation is done on one of the largest Android malware datasets
used in a research paper. When evaluating MaMaDroid, we use one set of malicious samples (e.g.,
drebin) and a benign set (e.g., oldbenign), thus experimenting with a balanced dataset among the
two classes, as shown in Table 1.
Benign Samples. Our benign datasets consist of two sets of samples: (1) one, which we denote as
oldbenign, includes 5,879 apps collected by PlayDrone [66] between April and November 2013,
and published on the Internet Archive6 on August 7, 2014; and (2) another, newbenign, obtained by
downloading the top 100 apps in each of the 29 categories on the Google Play store as of March 7,
2016, using the googleplay-api tool.7 Due to errors encountered while downloading some apps,
we have actually obtained 2,843 out of 2,900 apps. Note that 275 of these belong to more than one
category, therefore, the newbenign dataset ultimately includes 2,568 unique apps.

6https://archive.org/details/playdrone-apk-e8
7https://github.com/egirault/googleplay-api
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Fig. 7. CDFs of the number of API calls in different apps in each dataset (a), and of the percentage of android
(b) and google (c) family calls.

Android Malware Samples. The set of malware samples includes apps that were used to test
Drebin [4], dating back to October 2010 – August 2012 (5,560), which we denote as drebin,
as well as more recent ones that have been uploaded on the VirusShare8 site over the years. Specifi-
cally, we gather from VirusShare, respectively, 6,228, 15,417, 5,314, and 2,974 samples from 2013,
2014, 2015, and 2016. We consider each of these datasets separately for our analysis.
APICalls. For each app, we extract all API calls, using Androguard9, since, as explained in Section 4.5,
these constitute the features used by DroidAPIMiner [1] (against which we compare our system)
as well as a variant of MaMaDroid that is based on frequency analysis (see Section 6). Due to
Androguard failing to decompress some of the apks, bad CRC-32 redundancy checks, and errors
during unpacking, we are not able to extract the API calls for all the samples, but only for 40,923
(8,402 benign, 34,521 malware) out of the 43,940 apps in our datasets.
Call Graphs. To extract the call graph of each apk, we use Soot and FlowDroid. Note that for some
of the larger apks, Soot requires a non-negligible amount of memory to extract the call graph, so
we allocate 16GB of RAM to the Java VM heap space. We find that for 2,472 (364 benign + 2,108
malware) samples, Soot is not able to complete the extraction due to it failing to apply the jb
phase as well as reporting an error in opening some zip files (i.e., the apk). The jb phase is used by
Soot to transform Java bytecode into jimple intermediate representation (the primary IR of Soot)
for optimization purposes. Therefore, we exclude these apps in our evaluation and discuss this
limitation further in Section 8.4. In Table 1, we provide a summary of our seven datasets, reporting
the total number of samples per dataset, as well as those for which we are able to extract the API
calls (second-to-last column) and the call graphs (last column).
Dataset Characterization. Aiming to shed light on the evolution of API calls in Android apps,
we also performed some measurements over our datasets. In Fig. 7(a), we plot the Cumulative
Distribution Function (CDF) of the number of unique API calls in the apps in different datasets,
highlighting that newer apps, both benign and malicious, use more API calls overall than older
apps. This indicates that as time goes by, Android apps become more complex. When looking at the
fraction of API calls belonging to specific families, we discover some interesting aspects of Android
apps developed in different years. In particular, we notice that API calls belonging to the android
family become less prominent as time passes (Fig. 7(b)), both in benign and malicious datasets,
while google calls become more common in newer apps (Fig. 7(c)). In general, we conclude that
benign and malicious apps show the same evolutionary trends over the years. Malware, however,
8https://virusshare.com/
9https://github.com/androguard/androguard
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Fig. 8. F-measure of MaMaDroid classification with datasets from the same year using three different

classifiers.

appears to reach the same characteristics (in terms of level of complexity and fraction of API calls
from certain families) as legitimate apps with a few years of delay.

4 MAMADROID EVALUATION

We now present an experimental evaluation of MaMaDroid when it operates in family or
package mode. Later in Section 5, we evaluate it in class mode. We use the datasets summarized
in Table 1, and evaluate MaMaDroid, as per (1) its accuracy on benign and malicious samples
developed around the same time; and (2) its robustness to the evolution of malware as well as of the
Android framework by using older datasets for training and newer ones for testing and vice-versa.

4.1 Experimental Settings

To assess the accuracy of the classification, we use the standard F-measure metric, calculated
as F = 2 · (Precision · Recall)/(Precision + Recall), where Precision = TP/(TP+FP) and Recall =
TP/(TP+FN). TP denotes the number of samples correctly classified as malicious, while FP an FN
indicate, respectively, the number of samples mistakenly identified as malicious and benign.

Note that all our experiments perform 10-fold cross validation using at least one malicious and
one benign dataset from Table 1. In other words, after merging the datasets, the resulting set
is shuffled and divided into ten equal-size random subsets. Classification is then performed ten
times using nine subsets for training and one for testing, and results are averaged out over the ten
experiments.
When implementing MaMaDroid in family mode, we exclude json and dom families because

they are almost never used across all our datasets, and junit, which is primarily used for testing. In
package mode, in order to avoid incorrect abstraction when self-defined APIs have “android” in
the name, we split the android package into its two classes, i.e., android.R and android.Manifest.
Therefore, in family mode, there are 8 possible states, thus 64 features, whereas in package mode,
we have 341 states and 116,281 features (cf. Section 2.4).

4.2 MaMaDroid’s Performance (Family and Package Mode)

We start by evaluating the performance of MaMaDroid when it is trained and tested on dataset
from the same year.
In Fig. 8, we plot the F-measure achieved by MaMaDroid in family and package modes using

datasets from the same year for training and testing and the three different classifiers. As already
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XXXXXXXDataset

Mode [Precision, Recall, F-measure]
Family Family (PCA) Package Package (PCA)

drebin, oldbenign 0.82 0.95 0.88 0.84 0.92 0.88 0.95 0.97 0.96 0.94 0.95 0.94
2013, oldbenign 0.91 0.93 0.92 0.93 0.90 0.92 0.98 0.95 0.97 0.97 0.95 0.96
2014, oldbenign 0.88 0.96 0.92 0.87 0.94 0.90 0.93 0.97 0.95 0.92 0.96 0.94
2014, newbenign 0.97 0.99 0.98 0.96 0.99 0.97 0.98 1.00 0.99 0.97 1.00 0.99
2015, newbenign 0.89 0.93 0.91 0.87 0.93 0.90 0.93 0.98 0.95 0.91 0.97 0.94
2016, newbenign 0.87 0.91 0.89 0.86 0.88 0.87 0.92 0.92 0.92 0.88 0.89 0.89

Table 2. Precision, Recall, and F-measure obtained by MaMaDroid when trained and tested with dataset

from the same year, with and without PCA.
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Fig. 9. F-measure achieved by MaMaDroid using older samples for training and newer samples for testing.

discussed in Section 2.4, we apply PCA as it allows us transform a large feature space into a smaller
one. When operating in package mode, PCA could be particularly beneficial to reduce computation
and memory complexity, since MaMaDroid originally has to operate over 116,281 features. Hence,
in Table 2 we report the Precision, Recall, and F-measure achieved by MaMaDroid in both modes
with and without the application of PCA using Random Forest classifier. We report the results for
Random Forest only because it outperforms both 1-NN and 3-NN (Fig. 8) while also being very
fast. In package mode, we find that only 67% of the variance is taken into account by the 10 most
important PCA components, and in family mode, at least 91% of the variance is included by the 10
PCA Components. As shown in Table 2, the F-measure using PCA is only slightly lower (up to 3%)
than using the full feature set. In general, MaMaDroid performs better in package mode in all
datasets with F-measure ranging from 0.92 – 0.99 compared to 0.88 – 0.98 in family mode. This
is as a result of the increased granularity which enables MaMaDroid identify more differences
between benign and malicious apps. On the other hand, however, this likely reduces the efficiency
of the system, as many of the states derived from the abstraction are used only a few times. The
differences in time performance between the two modes are analyzed in details in Section 7.

4.3 Detection Over Time

As Android evolves over the years, so do the characteristics of both benign and malicious apps.
Such evolution must be taken into account when evaluating Android malware detection systems,
since their accuracy might significantly be affected as newer APIs are released and/or as malicious
developers modify their strategies in order to avoid detection. Evaluating this aspect constitutes
one of our research questions, and one of the reasons why our datasets span across multiple years
(2010–2016).
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Fig. 10. F-measure achieved by MaMaDroid using newer samples for training and older samples for testing.

Recall that MaMaDroid relies on the sequence of API calls extracted from the call graphs and
abstracted to either the package or the family level. Therefore, it is less susceptible to changes in the
Android API than other classification systems such as DroidAPIMiner [1] and Drebin [4]. Since
these rely on the use or the frequency, of certain API calls to classify malware vs benign samples,
they need to be retrained following new API releases. On the contrary, retraining is not needed as
often with MaMaDroid, since families and packages represent more abstract functionalities that
change less over time. Consider, for instance, the android.os.health package released in API
level 24; it contains a set of classes that helps developers track and monitor system resources.10
Classification systems built before this release – as in the case of DroidAPIMiner [1] (released in
2013, when Android API was up to level 20) – need to be retrained if this package is more frequently
used by malicious apps than benign apps, while MaMaDroid only needs to add a new state to
its Markov chain when operating in package mode, while no additional state is required when
operating in family mode.
Older training, newer testing. To verify this hypothesis, we test MaMaDroid using older samples as
training sets and newer ones as test sets. Fig. 9(a) reports the average F-measure of the classification
in this setting, with MaMaDroid operating in family mode. The x-axis reports the difference in
years between the training and testing malware dataset. We obtain 0.86 F-measure when we classify
apps one year older than the samples on which we train. Classification is still relatively accurate, at
0.75, even after two years. Then, from Fig. 9(b), we observe that the average F-measure does not
significantly change when operating in package mode. Both modes of operations are affected by
one particular condition, already discussed in Section 3: in our models, benign datasets seem to
“precede” malicious ones by 1–2 years in the way they use certain API calls. As a result, we notice
a drop in accuracy when classifying future samples and using drebin (with samples from 2010
to 2012) or 2013 as the malicious training set and oldbenign (late 2013/early 2014) as the benign
training set. More specifically, we observe that MaMaDroid correctly detects benign apps, while it
starts missing true positives and increasing false negatives — i.e., achieving lower Recall.
Newer training, older testing. We also set to verify whether older malware samples can still be
detected by the system—if not, this would obviously become vulnerable to older (and possibly
popular) attacks. Therefore, we also perform the “opposite” experiment, i.e., training MaMaDroid
with newer benign (March 2016) and malware (early 2014 to mid 2016) datasets, and checking
whether it is able to detect malware developed years before. Specifically, Fig. 10(a) and 10(b) report
results when training MaMaDroid with samples from a given year, and testing it with others that
10https://developer.android.com/reference/android/os/health/package-summary.html
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are up to 4 years older: MaMaDroid retains similar F-measure scores over the years. Specifically,
in family mode, it varies from 0.93 to 0.96, whereas in package mode, from 0.95 to 0.97 with the
oldest samples.

Note that as MaMaDroid does general malware classification and not targeted malware family
classification, we believe that its detection performance over time is not affected by the family
of malware in our datasets. For example, the drebin dataset comprises about 1,048 malware
families [4] which may not all be in the, e.g., 2016 dataset. As a result, MaMaDroid has no prior
knowledge of all the malware samples in the testing samples when it does classification using older
samples for training.

4.4 Case Studies of False Positives and Negatives

The experiment analysis presented above show that MaMaDroid detects Android malware
with high accuracy. As in any detection system, however, the system makes a small number of
incorrect classifications, incurring some false positives and false negatives. Next, we discuss a few
case studies aiming to better understand these misclassifications. We focus on the experiments
with newer datasets, i.e., 2016 and newbenign.
False Positives. First, we analyze the manifest of 164 apps mistakenly detected as malware by
MaMaDroid, finding that most of them use “dangerous” permissions [3]. In particular, 67% write
to external storage, 32% read the phone state, and 21% access the device’s fine location. We further
analyzed apps (5%) that use the READ_SMS and SEND_SMS permissions, i.e., even though they
are not SMS-related apps, they can read and send SMSs as part of the services they provide to
users. In particular, a “in case of emergency” app is able to send messages to several contacts from
its database (possibly added by the user), which is a typical behavior of Android malware in our
dataset, ultimately leading MaMaDroid to flag it as malicious. As there are sometimes legitimate
reasons for benign apps to use permissions considered to be dangerous, we also analyze the false
positives using a second approach. Specifically, we examine the average number of the 100 most
important features used by MaMaDroid to distinguish malware from benign apps that are present
in the false positive samples when operating in package mode. We select the top 100 features as
it represents no more than about 4.5% of the features (there are 2202 features in the 2016 and
newbenign datasets). As shown in Fig. 11, we find that for 90% of the false positives, there are only,
on average, 33 of the most important features present in their feature vectors which are similar
to the behavior observed in the true positives (34/100). MaMaDroid misclassifies these samples
because they exhibit similar behavior to the true positives and these samples could be further
manually analyzed to ascertain maliciousness.
False Negatives. We also check 114 malware samples missed by MaMaDroid when operating in
family mode, using VirusTotal.11 We find that 18% of the false negatives are actually not classified
as malware by any of the antivirus engines used by VirusTotal, suggesting that these are actually
legitimate apps mistakenly included in the VirusShare dataset. 45% of MaMaDroid’s false negatives
are adware, typically, repackaged apps in which the advertisement library has been substituted with
a third-party one, which creates a monetary profit for the developers. Since they are not performing
any clear malicious activity, MaMaDroid is unable to identify them as malware. Finally, we find
that 16% of the false negatives reported by MaMaDroid are samples sending text messages or
starting calls to premium services. We also do a similar analysis of false negatives when abstracting
to packages (74 samples), with similar results: there a few more adware samples (53%), but similar
percentages for potentially benign apps (15%) and samples sending SMSs or placing calls (11%).
Similarly, we also investigate the false negatives further, using the 100 most important features of
11https://www.virustotal.com
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Fig. 11. CDF of the number of important features in each classification type.

MaMaDroid when operating in package mode. As shown in Fig. 11, we find that for 90% of the
false negatives, they have on average, 97 of the 100 features similar to the true negatives (98/100).

4.5 MaMaDroid vs DroidAPIMiner

We also compare the performance of MaMaDroid to previous work using API features for
Android malware classification. Specifically, to DroidAPIMiner [1] because: (i) it uses API calls
and its parameters to perform classification; (ii) it reports high true positive rate (up to 97.8%) on
almost 4K malware samples obtained from McAfee and Genome [79], and 16K benign samples; and
(iii) its source code has been made available to us by the authors.

In DroidAPIMiner, permissions that are requested more frequently by malware samples than by
benign apps are used to perform a baseline classification. Then, the system also applies frequency
analysis on the list of API calls after removing API calls from ad libraries, using the 169 most
frequent API calls in the malware samples (occurring at least 6% more in malware than benign
samples). Finally, data flow analysis is applied on the API calls that are frequent in both benign
and malicious samples, but do not occur by at least 6% more in the malware set. Using the top 60
parameters, the 169 most frequent calls change, and the authors report a Precision of 97.8%.

After obtaining DroidAPIMiner’s source code from the authors, as well as a list of packages (i.e.,
ad libraries) used for feature refinement, we re-implement the system bymodifying the code in order
to reflect recent changes in Androguard (used by DroidAPIMiner for API call extraction), extract
the API calls for all apps in the datasets listed in Table 1, and perform a frequency analysis on the calls.
Recall that Androguard fails to extract calls for about 2% (1,017) of apps, thus DroidAPIMiner is
evaluated over the samples in the second-to-last column of Table 1. We also implement classification,
which is missing from the code provided by the authors, using k-NN (with k=3) since it achieves
the best results according to the paper. We use 2/3 of the dataset for training and 1/3 for testing as
implemented by the authors.
In Table 3, we report the results of DroidAPIMiner compared to MaMaDroid on different

combination of datasets. Specifically, we report results for experiments similar to those carried out
in Section 4.3 as we evaluate its performance on dataset from the same year and over time. First, we
train it using older dataset composed of oldbenign combined with one of the three oldest malware
datasets each (drebin, 2013, and 2014), and test on all malware datasets. Testing on all datasets
ensures the model is evaluated on dataset from the same year and newer. With this configuration,
the best result (with 2014 and oldbenign as training sets) is 0.62 F-measure when tested on the
same dataset. The F-measure drops to 0.33 and 0.39, respectively, when tested on samples one year
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Testing Sets

drebin, oldbenign 2013, oldbenign 2014, oldbenign 2015, oldbenign 2016, oldbenign
Training Sets Droid MaMa Droid MaMa Droid MaMa Droid MaMa Droid MaMa
drebin & oldbenign 0.32 0.96 0.35 0.95 0.34 0.72 0.30 0.39 0.33 0.42

2013 & oldbenign 0.33 0.94 0.36 0.97 0.35 0.73 0.31 0.37 0.33 0.28
2014 & oldbenign 0.36 0.92 0.39 0.93 0.62 0.95 0.33 0.78 0.37 0.75

drebin, newbenign 2013, newbenign 2014, newbenign 2015, newbenign 2016, newbenign
Training Sets Droid MaMa Droid MaMa Droid MaMa Droid MaMa Droid MaMa
2014 & newbenign 0.76 0.98 0.75 0.98 0.92 0.99 0.67 0.85 0.65 0.81

2015 & newbenign 0.68 0.97 0.68 0.97 0.69 0.99 0.77 0.95 0.65 0.88

2016 & newbenign 0.33 0.96 0.35 0.98 0.36 0.98 0.34 0.92 0.36 0.92

Table 3. Classification performance of DroidAPIMiner (Droid) [1] vs MaMaDroid (MaMa) in package mode

using Random Forest.

into the future and past. If we use the same configurations in MaMaDroid, in package mode, we
obtain up to 0.97 F-measure (using 2013 and oldbenign as training sets), dropping to 0.73 and 0.94
respectively, one year into the future and into the past. For the datasets where DroidAPIMiner
achieves its best result (i.e., 2014 and oldbenign), MaMaDroid achieves an F-measure of 0.95,
which drops to respectively, 0.78 and 0.93 one year into the future and the past. The F-measure is
stable even two years into the future and the past at 0.75 and 0.92 respectively. As a second set
of experiments, we train DroidAPIMiner using a dataset composed of newbenign (March 2016)
combined with one of the three most recent malware datasets each (2014, 2015, and 2016). Again,
we test DroidAPIMiner on all malware datasets. The best result is obtained when the 2014 and
newbenign dataset are used for both training and testing, yielding an F-measure of 0.92, which
drops to 0.67 and 0.75 one year into the future and past respectively. Likewise, we use the same
datasets for MaMaDroid, with the best results achieved on the same dataset as DroidAPIMiner.
In package mode, MaMaDroid achieves an F-measure of 0.99 which is maintained more than two
years into the past, but drops to respectively, 0.85 and 0.81 one and two years into the future

As summarized in Table 3, MaMaDroid achieves significantly higher performance in all but one
experiment than DroidAPIMiner. This case occurs when the malicious training set is much older
than the malicious test set.

5 FINER-GRAINED ABSTRACTION

In Section 4, we have showed that building models from abstracted API calls allows MaMaDroid
to obtain high accuracy, as well as to retain it over the years, which is crucial due to the continuous
evolution of the Android ecosystem. Our experiments have focused on operating MaMaDroid in
family and package mode (i.e., abstracting calls to family or package).

In this section, we investigate whether a finer-grained abstraction – namely, to classes – performs
better in terms of detection accuracy. Recall that our system performs better in package mode than
in family mode due to the system using in the former, finer and more features to distinguish between
malware and benign samples, so we set to verify whether one can trade-off higher computational
and memory complexities for better accuracy. To this end, as discussed in Section 2.3, we abstract
each API call to its corresponding class name using a whitelist of all classes in the Android API,
which consists of 4,855 classes (as of API level 24), and in the Google API, with 1,116 classes, plus
self-defined and obfuscated.
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XXXXXXXXDataset

Mode [Precision, Recall, F-measure]
Class Package

drebin, oldbenign 0.95 0.97 0.96 0.95 0.97 0.96
2013, oldbenign 0.98 0.95 0.97 0.98 0.95 0.97
2014, oldbenign 0.93 0.97 0.95 0.93 0.97 0.95
2014, newbenign 0.98 1.00 0.99 0.98 1.00 0.99
2015, newbenign 0.93 0.98 0.95 0.93 0.98 0.95
2016, newbenign 0.91 0.92 0.92 0.92 0.92 0.92

Table 4. MaMaDroid’s Precision, Recall, and F-measure when trained and tested on dataset from the same
year in class and package modes.
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Fig. 12. F-measure achieved by MaMaDroid in class mode when using newer (older) samples for training and

older (newer) samples for testing.

5.1 Reducing the size of the problem

Since there are 5,973 classes, processing the Markov chain transitions that results in this mode
increases the memory requirements. Therefore, to reduce the complexity, we cluster classes based
on their similarity. To this end, we build a co-occurrence matrix that counts the number of times a
class is used with other classes in the same sequence in all datasets. More specifically, we build
a co-occurrence matrix C , of size (5,973·5,973)/2, where Ci, j denotes the number of times the i-th
and the j-th class appear in the same sequence, for all apps in all datasets. From the co-occurrence
matrix, we compute the cosine similarity (i.e., cos(xxx ,yyy) = xxx ·yyy

| |xxx | | · | |yyy | | ), and use k-means to cluster the
classes based on their similarity into 400 clusters and use each cluster as the label for all the classes
it contains. Since we do not cluster classes abstracted to self-defined and obfuscated, we have a
total of 402 labels.

5.2 Class Mode Accuracy

In Table 4, we report the resulting F-measure in class mode using the above clustering approach
when the classifier is trained and tested on samples from the same year. Once again, we also report
the corresponding results from package mode for comparison (cf Section 4.2). Overall, we find that
class abstraction does not provide significantly higher accuracy. In fact, compared to package mode,
abstraction to classes only yields an average increase in F-measure of 0.0012.

5.3 Detection over time

We also report in Fig. 12 (the x-axis shows the difference in years between the training and
testing dataset.), the accuracy when MaMaDroid is trained and tested on dataset from different
years. We find that, when MaMaDroid operates in class mode, it achieves an F-measure of 0.95
and 0.99, respectively, when trained with datasets one and two years newer than the test sets, as
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XXXXXXXXDataset

Mode [Precision, Recall, F-measure]
Family Package

drebin, oldbenign - - - 0.51 0.57 0.54
2013, oldbenign - - - 0.53 0.57 0.55
2014, oldbenign 0.71 0.76 0.73 0.73 0.73 0.73
2014, newbenign 0.85 0.90 0.87 0.88 0.89 0.89
2015, newbenign 0.64 0.70 0.67 0.68 0.66 0.67
2016, newbenign 0.51 0.49 0.50 0.53 0.52 0.53

Table 5. Precision, Recall, and F-measure (with Random Forests) of FAM when trained and tested on dataset

from the same year in family and package modes.

reported in Fig. 12(a)). Likewise, when trained on datasets one and two years older than the test
set, F-measure reaches 0.84 and 0.59, respectively (see Fig. 12(b)).

Overall, comparing results from Fig. 9 to Fig. 12(b), we find that finer-grained abstraction actually
performs worse with time when older samples are used for training and newer for testing. We note
that this is due to a possible number of reasons: 1) newer classes or packages in recent API releases
cannot be captured in the behavioral model of older tools, whereas families are; and 2) evolution of
malware either as a result of changes in the API or patching of vulnerabilities or presence of newer
vulnerabilities that allows for stealthier malicious activities.

On the contrary, Fig. 10 and 12(a) show that finer-grained abstraction performs better when
the training samples are more recent than the test samples. This is because from recent samples,
we are able to capture the full behavioral model of older samples. However, our results indicate
there is a threshold for the level of abstraction which when exceeded, finer-grained abstraction
will not yield any significant improvement in detection accuracy. This is because API calls in older
releases are subsets of subsequent releases. For instance, when the training samples are two years
newer, MaMaDroid achieves an F-measure of 0.99, 0.97, and 0.95 respectively, in class, package,
and family modes. Whereas when they are three years newer, the F-measure is respectively, 0.97,
0.97, and 0.96 in class, package, and family modes.

6 FREQUENCY ANALYSIS MODEL (FAM)

MaMaDroid mainly relies on (1) API call abstraction, and (2) behavioral modeling via se-
quence of calls. As shown, it outperforms state-of-the-art Android detection techniques, such as
DroidAPIMiner [1], that are based on the frequency of non-abstracted API calls. In this section,
we aim to assess whether MaMaDroid’s effectiveness mainly stems from the API abstraction, or
from the sequence modeling. To this end, we implement and evaluate a variant that uses frequency,
rather than sequences, of abstracted API calls. More precisely, we perform frequency analysis on the
API calls extracted using Androguard after removing ad libraries, as also done in DroidAPIMiner.
In the rest of the section, we denote this variant as FAM (Frequency Analysis Model).
We again use the datasets in Table 1 to evaluate FAM’s accuracy when training and testing on

datasets from the same year and from different years. We also evaluate how it compares to standard
MaMaDroid. Although we have also implemented FAM in class mode, we do not discuss/report
results here due to space limitation.

6.1 FAM Accuracy

We start our evaluation by measuring how well FAM detects malware by training and testing
using samples that are developed around the same time. Fig. 13 reports the F-measure achieved in
family and package modes using three different classifiers. Also, Table 5 reports Precision, Recall,
and F-measure achieved by FAM on each dataset combination, when operating in family and
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Fig. 13. F-measure for the FAM variant, over same-year datasets, with different classifiers.

package mode, using Random Forests. We only report the results from the Random Forest classifier
because it outperforms both the 1-NN and 3-NN classifiers.

Family mode. Due to the number of possible families (i.e., 11), FAM builds a model from all families
that occur more in our malware dataset than the benign dataset. Note that in this modeling
approach, we also remove the junit family as it is mainly used for testing. When the drebin and
2013 malware datasets are used in combination with the oldbenign dataset, there are no families
that are more frequently used in these datasets than the benign dataset. As a result, FAM does not
yield any result with these datasets as it operates by building a model only from API calls that
are more frequently used in malware than benign samples. With the other datasets, there are two
(2016), four (2014), and five families (2015) that occur more frequently in the malware dataset than
the benign one.
From Fig. 13(a), we observe that F-measure is always at least 0.5 with Random Forests, and

when tested on the 2014 (malware) dataset, it reaches 0.87. In general, lower F-measures are due to
increased false positives. This follows a similar trend observed in Section 4.3.

Package mode. When FAM operates in package mode, it builds a model using the minimum of, all
API calls that occur more frequently in malware or the top 172 API calls used more frequently in
malware than benign apps. We use the top 172 API calls as we attempt to build the model where
possible, with packages from at least two families (the android family has 171 packages). In our
dataset, there are at least two (2013) and at most 39 (2016) packages that are used more frequently
in malware than in benign samples. Hence, all packages that occur more in malware than benign
apps are always used to build the model.

Classification performance improves in package mode, with F-measure ranging from 0.53 with
2016 and newbenign to 0.89 with 2014 and newbenign, using Random Forests. Fig. 13(b) shows
that Random Forests generally provides better results also in this case. Similar to family mode, the
drebin and 2013 datasets respectively, have only five and two packages that occur more than in
the oldbenign dataset. Hence, the results when these datasets are evaluated is poor due to the
limited amount of features.

TakeAways.Although we discuss in more detail the performance of the FAM variant vs the standard
MaMaDroid in Section 6.3, we can already observe that the former does not yield a robust model,
mostly due to the fact that in some cases, no abstracted API calls occur more in malware than
benign samples.
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Fig. 14. F-measure achieved by FAM using older samples for training and newer samples for testing.

6.2 Detection Over Time

Once again, we evaluate the detection accuracy over time, i.e., we train FAM using older samples
and test it with newer samples and vice versa. We report the F-measure as the average of the
F-measure over multiple dataset combinations; e.g., when training with newer samples and testing
on older samples, the F-measure after three years is the average of the F-measure when training
with (2015, newbenign) and (2016, newbenign), respectively, and testing on drebin and 2013.
Older training, newer testing. In Fig. 14(a), we show the F-measure when FAM operates in family
mode and is trained with datasets that are older than the classified datasets. The x-axis reports the
difference in years between the training and testing dataset. We obtain an F-measure of 0.97 when
training with samples that are one year older than the samples in the testing set. As mentioned in
Section 6.1, there is no result when the drebin and 2013 datasets are used for training, hence, after
3 years the F-measure is 0. In package mode, the F-measure is 0.81 after one year, and 0.76 after
two (Fig. 14(b)).
While FAM appears to perform better in family mode than in package mode, note that the

detection accuracy after one and two years in family mode does not include results when the
training set is (drebin, oldbenign) or (2013, oldbenign) (cf Section 6.1). We believe this is as a
result of FAM performing best when trained on the 2014 dataset in both modes and performing
poorly in package mode when trained with (drebin, oldbenign) and (2013, oldbenign) due
to limited features. For example, result after two years is the average of the F-measure when
training with (2014, oldbenign/newbenign) datasets and testing on the 2016 dataset. Whereas in
package mode, result is the average F-measure obtained from training with (drebin, oldbenign),
(2013, oldbenign), and (2014, oldbenign/newbenign) datasets and testing with respectively,
2014, 2015, and 2016.
Newer training, older testing. We also evaluate the opposite setting, i.e., training FAM with newer
datasets, and checking whether it is able to detect malware developed years before. Specifically,
Fig. 15 reports results when training FAM with samples from a given year, and testing it with others
that are up to 4 years older showing that F-measure ranges from 0.69 to 0.92 in family mode and
0.65 to 0.94 in package mode. Recall that in family mode, FAM is unable to build a model when
drebin and 2013 are used for training, thus, effecting the overall result. This effect is minimal in
this setting since the training sets are newer than the test sets, thus, the drebin dataset is not used
to evaluate any dataset while the 2013 dataset is used in only one setting, i.e., when the training
set is one year newer than the testing set.
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Fig. 15. F-measure achieved by FAM using newer samples for training and older samples for testing.

XXXXXXXXDataset

Mode
F-measure

Family Package
FAM MaMaDroid FAM MaMaDroid DroidAPIMiner

drebin, oldbenign - 0.88 0.54 0.96 0.32
2013, oldbenign - 0.92 0.55 0.97 0.36
2014, oldbenign 0.73 0.92 0.73 0.95 0.62
2014, newbenign 0.87 0.98 0.89 0.99 0.92
2015, newbenign 0.67 0.91 0.67 0.95 0.77
2016, newbenign 0.50 0.89 0.53 0.92 0.36

Table 6. F-measure of FAM and MaMaDroid in family and package modes as well as, DroidAPIMiner [1]

when trained and tested on dataset from the same year.

6.3 Comparing Frequency Analysis vs. Markov Chain Model (Package and Family

Mode)

We now compare the detection accuracy of FAM– a variant of MaMaDroid that is based on a
frequency analysis model – to the standard MaMaDroid, which is based on a Markov chain model
using the sequence of abstracted API calls.
Detection Accuracy of malware from same year. In Table 6, we report the accuracy of FAM and Ma-
MaDroid when they are trained and tested on samples from the same year using Random Forests
in both family and package modes. For completeness, we also report results from DroidAPIMiner,
showing that MaMaDroid outperforms FAM and DroidAPIMiner in all tests. Both FAM and
DroidAPIMiner performs best when trained and tested with (2014 and newbenign) with F-
measures of 0.89 (package mode) and 0.92, respectively. Overall, MaMaDroid achieves higher
F-measure compared to FAM and DroidAPIMiner due to both API call abstraction and Markov
chain modeling of the sequence of calls, which successfully captures the behavior of the app. In
addition, MaMaDroid is more robust as with some datasets, frequency analysis fails to build a
model with abstracted calls when the abstracted calls occur equally or more frequently in benign
samples.
Detection Accuracy of malware from different years. We also compare FAM with MaMaDroid
when they are trained and tested with datasets across several years. In Table 7, we report the
F-measures achieved by MaMaDroid and FAM in package mode using Random Forests, and show
how they compare with DroidAPIMiner using two different sets of experiments. In the first set
of experiments, we train MaMaDroid, FAM, and DroidAPIMiner using samples comprising the
oldbenign and one of the three oldest malware datasets (drebin, 2013, 2014) each, and testing on
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Testing Sets

drebin, oldbenign 2013, oldbenign 2014, oldbenign 2015, oldbenign 2016, oldbenign
Training Sets Droid FAM MaMa Droid FAM MaMa Droid FAM MaMa Droid FAM MaMa Droid FAM MaMa
drebin,oldbenign 0.32 0.54 0.96 0.35 0.50 0.96 0.34 0.50 0.79 0.30 0.50 0.42 0.33 0.51 0.43
2013,oldbenign 0.33 0.90 0.93 0.36 0.55 0.97 0.35 0.95 0.74 0.31 0.87 0.36 0.33 0.82 0.29
2014,oldbenign 0.36 0.95 0.92 0.39 0.99 0.93 0.62 0.73 0.95 0.33 0.81 0.79 0.37 0.82 0.78

drebin, newbenign 2013, newbenign 2014, newbenign 2015, newbenign 2016, newbenign
Training Sets Droid FAM MaMa Droid FAM MaMa Droid FAM MaMa Droid FAM MaMa Droid FAM MaMa
2014,newbenign 0.76 0.99 0.99 0.75 0.99 0.99 0.92 0.89 0.99 0.67 0.86 0.89 0.65 0.82 0.83

2015,newbenign 0.68 0.92 0.98 0.68 0.84 0.98 0.69 0.95 0.99 0.77 0.67 0.95 0.65 0.91 0.90
2016,newbenign 0.33 0.83 0.97 0.35 0.69 0.97 0.36 0.91 0.99 0.34 0.86 0.93 0.36 0.53 0.92

Table 7. F-Measure of MaMaDroid (MaMa) vs our variant using frequency analysis (FAM) vs DroidAPIMiner

(Droid) [1].

all malware datasets. MaMaDroid and FAM both outperform DroidAPIMiner in all experiments in
this setting, showing that abstracting the API calls improves the detection accuracy of our systems.
FAM outperforms MaMaDroid in nine out of the 15 experiments, largely, when the training set
comprises the drebin/2013 and oldbenign datasets. Recall that when drebin and 2013 malware
datasets are used for training FAM in package mode, only five and two packages, respectively,
are used to build the model. It is possible that these packages are the principal components (as in
PCA) that distinguishes malware from benign samples. In the second set of experiments, we train
MaMaDroid, FAM, and DroidAPIMiner using samples comprising the newbenign and one of the
three recent malware datasets (2014, 2015, 2016) each, and testing on all malware datasets. In this
setting, MaMaDroid outperforms both FAM and DroidAPIMiner in all but one experiment where
FAM is only slightly better. Comparing DroidAPIMiner and FAM shows that DroidAPIMiner
only performs better than FAM in two out of 15 experiments. In these two experiments, FAM was
trained and tested on samples from the same year and resulted in a slightly lower Precision, thus,
increasing false positives.

Overall, we find that the Markov chain based model achieves higher detection accuracy in both
family and package modes when MaMaDroid is trained and tested on dataset from the same year
(Table 6) and across several years (Table 7).

7 RUNTIME PERFORMANCE

We now analyze the runtime performance of MaMaDroid and the FAM variant, when operating
in family, package, or class mode, as well as DroidAPIMiner. We run our experiments on a desktop
with a 40-core 2.30GHz CPU and 128GB of RAM, but only use 1 core and allocate 16GB of RAM for
evaluation.

7.1 MaMaDroid

We envision MaMaDroid to be integrated in offline detection systems, e.g., run by an app
store. Recall that MaMaDroid consists of different phases, so in the following, we review the
computational overhead incurred by each of them, aiming to assess the feasibility of real-world
deployment.
MaMaDroid’s first step involves extracting the call graph from an apk and the complexity of

this task varies significantly across apps. On average, it takes 9.2s±14 (min 0.02s, max 13m) to
complete for samples in our malware sets. Benign apps usually yield larger call graphs, and the
average time to extract them is 25.4s±63 (min 0.06s, max 18m) per app. Next, we measure the time
needed to extract call sequences while abstracting to families, packages or classes depending on
MaMaDroid’s mode of operation. In family mode, this phase completes in about 1.3s on average
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(and at most 11.0s) with both benign and malicious samples. Abstracting to packages takes slightly
longer, due to the use of 341 packages in MaMaDroid. On average, this extraction takes 1.67s±3.1
for malicious apps and 1.73s±3.2 for benign samples. Recall that in class mode, after abstracting to
classes, we cluster the classes to a smaller set of labels due to its size. Therefore, in this mode it
takes on average, 5.84s±2.1 and 7.3s±4.2 respectively, to first abstract the calls from malware and
benign apps to classes and 2.74s per app to build the co-occurrence matrix from which we compute
the similarity between classes. Finally, clustering and abstracting each call to its corresponding
class label takes 2.38s and 3.4s respectively, for malware and benign apps. In total, it takes 10.96s to
abstract calls from malware apps to their corresponding class labels and 13.44s for benign apps.
MaMaDroid’s third step includes Markov chain modeling and feature vector extraction. With

malicious samples, it takes on average 0.2s±0.3, 2.5s±3.2, and 1.49s±2.39 (and at most 2.4s, 22.1s,
and 46.10s), respectively, with families, packages, and classes, whereas with benign samples, it
takes 0.6s±0.3, 6.7s±3.8, and 2.23s±2.74 (at most 1.7s, 18.4s, and 43.98s). Finally, the last step is
classification, and performance depends on both the machine learning algorithm employed and the
mode of operation. More specifically, running times are affected by the number of features for the
app to be classified, and not by the initial dimension of the call graph, or by whether the app is
benign or malicious. Regardless, in family mode, Random Forests, 1-NN, and 3-NN all take less
than 0.01s. With packages, it takes, respectively, 0.65s, 1.05s, and 0.007s per app with 1-NN, 3-NN,
Random Forests. Whereas it takes, respectively, 1.02s, 1.65s, and 0.05s per app with 1-NN, 3-NN,
and Random Forests in class mode.
Overall, when operating in family mode, malware and benign samples take on average, 10.7s

and 27.3s, respectively, to complete the entire process, from call graph extraction to classification.
In package mode, the average completion times for malware and benign samples are 13.37s and
33.83s, respectively. Whereas in class mode, the average completion times are, respectively, 21.7s
and 41.12s for malware and benign apps. In all modes of operation, time is mostly (>80%) spent on
call graph extraction.

7.2 FAM

Recall that FAM is a variant of MaMaDroid including three phases. The first one, API calls
extraction, takes 0.7s±1.5 (min 0.01s, max 28.4s) per app in our malware datasets and 13.2s±22.2
(min 0.01s, max 222s) per benign app. The second phase includes API call abstraction, frequency
analysis, and feature extraction. While API call abstraction is dependent on the dataset and the
mode of operation, frequency analysis and feature extraction are only dependent on the mode of
operation and are very fast in all modes. In particular, it takes on average, 1.32s, 1.69s±3.2, and
5.86s±2.1, respectively, to complete a malware app in family, package, and class modes. Whereas
it takes on average, 1.32s±3.1, 1.75s±3.2, and 7.32s±2.1, respectively, for a benign app in family,
package, and class modes. The last phase which is classification is very fast regardless of dataset,
mode of operation, and classifier used. Specifically, it takes less than 0.01s to classify each app
in all modes using the three different classifiers. Overall, it takes in total 2.02s, 2.39s, and 6.56s
respectively, to classify a malware app in family, package, and class modes. While with benign
apps, the total is 14.52s, 14.95s, and 20.52s, respectively, in family, package, and class modes.

7.3 DroidAPIMiner

Finally, we evaluate the runtime performance of DroidAPIMiner [1]. Its first step, i.e., extracting
API calls, takes 0.7s±1.5 (min 0.01s, max 28.4s) per app in our malware datasets. Whereas it takes
on average, 13.2s±22.2 (min 0.01s, max 222s) per benign app. In the second phase, i.e., frequency
and data flow analysis, it takes, on average, 4.2s per app. Finally, classification using 3-NN is
very fast: 0.002s on average. Therefore, in total, DroidAPIMiner takes respectively, 17.4s and
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4.9s for a complete execution on one app from our benign and malware datasets, which while
faster than MaMaDroid, achieves significantly lower accuracy. In comparison to MaMaDroid,
DroidAPIMiner takes 5.8s and 9.9s less on average to analyze and classify a malicious and benign
app when MaMaDroid operates in family mode and 8.47s and 16.43s less on average in package
mode.

7.4 Take Aways

In conclusion, our experiments show that our prototype implementation of MaMaDroid is
scalable enough to be deployed. Assuming that, everyday, a number of apps in the order of 10,000
are submitted to Google Play, and using the average execution time of benign samples in family
(27.3s), package (33.83s), and class (41.12s) modes, we estimate that it would take less than two
hours to complete execution of all apps submitted daily in all modes, with just 64 cores. Note
that we could not find accurate statistics reporting the number of apps submitted everyday, but
only the total number of apps on Google Play.12 On average, this number increases by a couple of
thousands per day, and although we do not know how many apps are removed, we believe 10,000
apps submitted every day is likely an upper bound.

8 DISCUSSION

We now discuss the implications of our results with respect to the feasibility of modeling app
behavior using static analysis and Markov chains, discuss possible evasion techniques, and highlight
some limitations of our approach.

8.1 Lessons Learned

Our work yields important insights around the use of API calls in malicious apps, showing that,
by abstracting the API calls to higher levels and modeling these abstracted calls, we can obtain
high detection accuracy and retain it over several years, which is crucial due to the continuous
evolution of the Android ecosystem.
As discussed in Section 3, the use of API calls changes over time, and in different ways across

malicious and benign samples. From our newer datasets, which include samples up to Spring 2016
(API level 23), we observe that newer APIs introduce more packages, classes, and methods, while
also deprecating some. Fig. 7(a) show that benign apps use more calls than malicious ones developed
around the same time. We also notice an interesting trend in the use of Android (Fig. 7(b)) and
Google (Fig. 7(c)) APIs: malicious apps follow the same trend as benign apps in the way they adopt
certain APIs, but with a delay of some years. This might be a side effect of Android malware authors’
tendency to repackage benign apps, adding their malicious functionalities onto them.

Given the frequent changes in the Android framework and the continuous evolution of malware,
systems like DroidAPIMiner [1] – being dependent on the presence or the use of certain API
calls – become increasingly less effective with time. As shown in Table 3, malware that uses API
calls released after those used by samples in the training set cannot be identified by these systems.
On the contrary, as shown in Fig. 9, MaMaDroid detects malware samples that are 1 year newer
than the training set obtaining an F-measure of 0.86 (as opposed to 0.46 with DroidAPIMiner)
when the apps are modeled as Markov chains. After 2 years, the value is still at 0.75 (0.42 with
DroidAPIMiner), dropping to 0.51 after 4 years.

We argue that the effectiveness of MaMaDroid’s classification remains relatively high “over the
years” owing to the Markov models capturing app’s behavior. These models tend to be more robust
to malware evolution because abstracting to, e.g., packages makes the system less susceptible to the

12http://www.appbrain.com/stats/number-of-android-apps
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introduction of new API calls. To verify this, we developed a variant of MaMaDroid named FAM
that abstracts API calls and is based on frequency analysis similar to DroidAPIMiner. Although,
the addition of API call abstraction results in an improvement of the detection accuracy of the
system (an F-measure of 0.81 and 0.76 after one and two years respectively), it also resulted in
scenarios where there are no API calls that are more frequently used in malware than benign apps.
In general, abstraction allows MaMaDroid capture newer classes/methods added to the API,

since these are abstracted to already-known families or packages. As a result, it does not require
any change or modification in its operation with new API releases. In case new packages are added
to new API level releases, MaMaDroid only requires adding a new state for each new package to
the Markov chains, and the probability of a transition from a state to this new state in old apps
(i.e., apps without the new packages) would be 0. That is, if only two packages are added in the
new API release, only two states need to be added which requires trivial effort. In reality though,
methods and classes are more frequently added than packages with new API releases. Hence, we
also evaluate whether MaMaDroid still performs as well as in package mode when we abstract
API calls to classes and measure the overall overhead increase. Results from Figure 12, 14, and 15
indicate that finer-grained abstraction is less effective as time passes when older samples are used
for training and newer samples for testing, while they are more effective when samples from the
same year or newer than the test sets are used for training. However, while all three modes of
abstraction performs relatively well, we believe abstraction to packages is the most effective as it
generally performs better than family – though less lightweight – and as well as class but more
efficient.

8.2 Potential Machine Learning Bias

Recently, Pendelebury et al. [51] present Tesseract, which attempts to eliminate spatial and
temporal bias present in malware classifiers. To this end, the authors suggest malware classifiers
should enforce three constraints: 1) temporal training consistency, i.e., all objects in the training
set must temporally precede all objects in the testing set, 2) temporal goodware/malware windows
consistency, i.e., in every testing slot of size ∆, all test objects must be from the same time window,
and 3) realistic malware-to-goodware percentage in testing, i.e., the testing distribution must reflect
the real-world percentage of malware observed in the wild.
With respect to temporal bias, recall that we evaluate MaMaDroid over several experimental

settings and many of these settings do not violate these constraints. For example, there is temporal
goodware/malware windows consistency in many of the settings when it is evaluated using
samples from the same year (e.g., newbenign and 2016) and when it is trained on older (resp., newer)
samples and tested on newer (resp., older) samples, e.g., oldbenign and 2013.While temporal training
consistency shows the performance of the classifier in detecting unknown samples (especially when
the unknown samples are not derivatives of previously known malware family), many malware
classifiers naturally have false negatives. Malware families in these false negatives could form
the base for present or “future” malware. For example, samples previously classed as goodware
from Google Play Store are from time to time detected as malware [13, 14, 61, 67]. As a result of
samples previously detected as goodware now being detected as malware, we argue that robust
malware classifiers should be able to detect previous (training with newer samples and testing on
older samples), present (training and testing on samples from the same time window), and future
(training on older samples and testing on newer samples) malware objects effectively.

Note that we do not enforce the constraint eliminating spatial bias as proposed in Tesseract.
When evaluating MaMaDroid, the minimum and maximum percentages of malware in the testing
set are, resp., 49.7% and 84.85%, which may in theory effect Precision and Recall. However, as
highlighted in [51], estimating the percentage of malicious Android apps in the wild with respect
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to goodware, is a non-trivial task, with different sources reporting different results [28, 40]. For
more considerations on how the Tesseract framework uses MaMaDroid, please refer to [43].

8.3 Evasion

Next, we discuss possible evasion techniques and how they can be addressed. One straightforward
evasion approach could be to repackage a benign app with small snippets of malicious code added
to a few classes. However, it is difficult to embed malicious code in such a way that, at the same
time, the resulting Markov chain looks similar to a benign one. For instance, our running example
from Section 2 (malware posing as a memory booster app and executing unwanted commands as
root) is correctly classified by MaMaDroid; although most functionalities in this malware are the
same as the original app, injected API calls generate some transitions in the Markov chain that are
not typical of benign samples.
The opposite procedure, i.e., embedding portions of benign code into a malicious app, is also

likely ineffective against MaMaDroid, since, for each app, we derive the feature vector from
the transition probability between calls over the entire app. A malware developer would have to
embed benign code inside the malware in such a way that the overall sequence of calls yields
similar transition probabilities as those in a benign app, but this is difficult to achieve because if
the sequences of calls have to be different (otherwise there would be no attack), then the models
will also be different.

While MaMaDroid is able to detect our running example that employs this piggybacking/repack-
ing evasion technique discussed above, it may still be possible to evade MaMaDroid using the
technique. For example, as discussed in Section 3, malware samples show the same characteristics
in terms of level of complexity and fraction of API calls from certain API call families as benign
apps with a few years of delay. An adversary could inject more API calls into a malicious sample
so as to mimic the characteristics of a benign sample, which would in turn effect the transition
probabilities of the app’s Markov chains and may result in misclassification. As part of future work,
we plan to investigate how this evasion technique affects the effectiveness of MaMaDroid and
other API call-based malware detection tools. For example, if a benign app is repackaged and only
a single method that performs malicious activity is injected, does MaMaDroid detect the app
as malicious? If more methods and classes that perform malicious activities are added, is there a
threshold of the number of methods or classes at which MaMaDroid detects an app as malicious
and benign otherwise?
Attackers could also try to use reflection, dynamic code loading, or native code [52] to evade

MaMaDroid. Because MaMaDroid uses static analysis, it fails to detect malicious code when it
is loaded or determined at runtime. However, MaMaDroid can detect reflection when a method
from the reflection package (java.lang.reflect) is executed. Therefore, we obtain the correct
sequence of calls up to the invocation of the reflection call, which may be sufficient to distinguish
between malware and benign apps. Similarly, MaMaDroid can detect the usage of class loaders
and package contexts that can be used to load arbitrary code, but it is not able to model the code
loaded. Likewise, native code that is part of the app cannot be modeled, as it is not Java and is
not processed by Soot. These limitations are not specific to MaMaDroid, but common to static
analysis in general, and could be possibly mitigated using MaMaDroid alongside dynamic analysis
techniques.

Another approach could be using dynamic dispatch so that a class X in package A is created to
extend class Y in package B with static analysis reporting a call to root() defined in Y as X.root(),
whereas at runtime, Y.root() is executed. This can be addressed, however, with a small increase in
MaMaDroid’s computational cost, by keeping track of self-defined classes that extend or implement
classes in the recognized APIs, and abstract polymorphic functions of this self-defined class to the
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corresponding recognized package, while, at the same time, abstracting as self-defined overridden
functions in the class.

Finally, identifiermangling and other forms of obfuscation could be used; aiming to obfuscate code
and hide malicious actions. However, since classes in the Android framework cannot be obfuscated
by obfuscation tools, malware developers can only do so for self-defined classes. MaMaDroid labels
obfuscated calls as obfuscated so, ultimately, these would be captured in the behavioral model
(and the Markov chain) for the app. In our samples, we observe that benign apps use significantly
less obfuscation than malicious apps, indicating that obfuscating a significant number of classes is
not a good evasion strategy since this would likely make the sample more easily identifiable as
malicious. Malware developers might also attempt to evade MaMaDroid by naming their self-
defined packages in such a way that they look similar to that of the android or google APIs, e.g.,
java.lang.reflect.malware. However, this is easily prevented by first abstracting to classes before
abstracting to any further modes as we already do.

8.4 Limitations

MaMaDroid requires a sizable amount of memory in order to perform classification, when
operating in package or class mode, working onmore than 100,000 features per sample. The quantity
of features, however, can be further reduced using feature selection algorithms such as PCA. As
explained in Section 6, when we use 10 components from the PCA, the system performs almost
as well as the one using all the features; however, using PCA comes with a much lower memory
complexity in order to run the machine learning algorithms, because the number of dimensions of
the features space where the classifier operates is remarkably reduced.

Soot [63], which we use to extract call graphs, fails to analyze some apks. In fact, we were not able
to extract call graphs for a fraction (4.6%) of the apps in the original datasets due to scripts either
failing to apply the jb phase, which is used to transform Java bytecode to the primary intermediate
representation (i.e., jimple) of Soot or not able to open the apk. Even though this does not really
affect the results of our evaluation, one could avoid it by using a different/custom intermediate
representation for the analysis or use different tools to extract the call graphs which we plan to do
as part of future work.

In general, static analysis methodologies for malware detection on Android could fail to capture
the runtime environment context, code that is executed more frequently, or other effects stemming
from user input [4]. These limitations can be addressed using dynamic analysis, or by recording
function calls on a device. Dynamic analysis observes the live performance of the samples, recording
what activity is actually performed at runtime. Through dynamic analysis, it is also possible to
provide inputs to the app and then analyze the reaction of the app to these inputs, going beyond
static analysis limits. To this end, we plan to integrate dynamic analysis to build the models used
by MaMaDroid as part of future work.

As mentioned, the injection of malicious code into benign apps may evade MaMaDroid when
the malicious functions are a little amount of API transitions. Future work could explore this
direction to understand the sensitivity of the system to the modification of benign apps. Finally, we
have not compared MaMaDroid to other static analysis-based Android malware detection tools
with publicly available code (e.g., TriFlow [45] and AppContext [74]) that employ information flow
analysis, rather, to DroidAPIMiner and FAM to show, respectively, the effects of modeling the
behavior of an app as Markov chains from the sequence of API calls and the effects of abstraction.
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9 RELATEDWORK

Over the past few years, Android security has attracted a wealth of work by the research
community. In this section, we review (i) program analysis techniques focusing on general security
properties of Android apps, and then (ii) systems that specifically target malware on Android.

9.1 Program Analysis

Previous work on program analysis applied to Android security has either used static or dynamic
analysis and in some cases, combined both. With static analysis, the program’s code is decompiled
in order to extract features without actually running the program, usually employing tools such as
Dare [49] to obtain Java bytecode. Whereas dynamic analysis involves real-time execution of the
program, typically in an emulated or protected environment.
Static analysis techniques include work by Felt et al. [22], who analyze API calls to identify

over-privileged apps, while Kirin [21] is a system that examines permissions requested by apps
to perform a lightweight certification, using a set of security rules that indicate whether or not
the security configuration bundled with the app is safe. RiskRanker [30] aims to identify zero-day
Android malware by assessing potential security risks caused by untrusted apps. It sifts through a
large number of apps from Android markets and examines them to detect certain behaviors, such
as encryption and dynamic code loading, which form malicious patterns and can be used to detect
stealthy malware. Other methods, such as CHEX [41], use data flow analysis to automatically vet
Android apps for vulnerabilities. Static analysis has also been applied in the detection of data leaks
and malicious data flows from Android apps [5, 37, 38, 75].

DroidScope [72] and TaintDroid [20] monitor run-time app behavior in a protected environment
to perform dynamic taint analysis. DroidScope performs dynamic taint analysis at the machine code
level, while TaintDroid monitors how third-party apps access or manipulate users’ personal data,
aiming to detect sensitive data leaving the system. However, as it is unrealistic to deploy dynamic
analysis techniques directly on users’ devices, due to the overhead they introduce, these are typically
used offline [56, 60, 81]. ParanoidAndroid [54] employs a virtual clone of the smartphone, running
in parallel in the cloud and replaying activities of the device – however, even if minimal execution
traces are actually sent to the cloud, this still takes a non-negligible toll on battery life. Recently,
hybrid systems like IntelliDroid [68] have also been proposed that serve as input generators,
producing inputs specific to dynamic analysis tools. Other works [7, 26, 71, 80] combining static
and dynamic analysis have also been proposed.

9.2 Android Malware Detection

Signature-based methods. A number of techniques have used signatures for Android malware
detection. ASTROID [23] uses maximally suspicious common subgraph (MSCS) among malware
samples belonging to the same family, as signatures for malware detection. It operates by first
learning an MSCS that is common to all samples belonging to the same malware family, with the
MSCS then used as a signature to approximately match other samples belonging to the malware
family. While approximate matching helps improve the accuracy of ASTROID when tested on
unknown signatures, it would introduce more false positives due to the lower similarity threshold
(score of 0.5) required to classify an app as a member of a malware family. Compared to ASTROID,
MaMaDroid does not require the family label of a malware sample, i.e., it operates like the unknown
signatures/zero-day version of ASTROID with high detection efficiency.
NetworkProfiler [19] also employs a signature-based method by generating network profiles

for Android apps and extracting fingerprints based on such traces, while Canfora et al. [10] obtain
resource-based metrics (CPU, memory, storage, network) to distinguish malware activity from
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benign one. StormDroid [16] extracts statistical features, such as permissions and API calls, and
extend their vectors to add dynamic behavior-based features. While its experiments show that
its solution outperforms, in terms of accuracy, other antivirus systems, it also indicates that the
quality of its detection model critically depends on the availability of representative benign and
malicious apps for training [16]. MADAM [57] also extract features at four layers which are used
to build a behavioral model for apps and uses two parallel classifiers to detect malware. Similarly,
ScanMeMobile [77] uses the Google Cloud Messaging Service (GCM) to perform static and dynamic
analysis on apks found on the device’s SD card.

Sequence of calls. The sequences of system calls have also been used to detect malware in both
desktop and Android environments. Hofmeyr et al. [31] show that short sequences of system calls
can be used as a signature to discriminate between normal and abnormal behavior of common
UNIX programs. Like signature-based methods, however, these can be evaded by polymorphism
and obfuscation, or by call re-ordering attacks [39], even though quantitative measures, such as
similarity analysis, can be used to address some of these attacks [59]. MaMaDroid inherits the
spirit of these approaches, with a statistical method to model app behavior that is more robust
against evasion attempts.
Specific to Android, Canfora et al. [9] use the sequences of three system calls (extracted from

the execution traces of apps under analysis) to detect malware. This approach models specific
malware families, aiming to identify additional samples belonging to such families. By contrast,
MaMaDroid’s goal is to detect previously-unseen malware, and we also show that our system
can still detect new malware samples that appear years after the system has been trained. In
addition, using strict sequences of system or API calls could more easily be evaded by malware via
unnecessary calls to effectively evade detection. Conversely, MaMaDroid builds a behavioral model
of an Android app, which makes it robust to this type of evasion. MaMaDroid is more scalable as
it uses static analysis compared to [9] which extracts the sequence of calls from executing each
app for 60 secs on a device. As [9] is based on system calls extracted dynamically, their work differ
from MaMaDroid as the sequence of three system calls as used in the former could potentially be
mapped to a single API call in the latter or insufficient for mapping to a single API call and hence,
not considered to be a sequence in the latter.

TriFlow [45] triage risky apps by using the observed and possible information flows from sources
to sinks in the apps to prioritize the apps that should be investigated further. It employs speculative
rather than the actual information flows to predict the existence of information flows from sources
to sinks. Compared to TriFlow, MaMaDroid models the behavior of an app via the sequence of all
API calls extracted statically, rather than via flows from sources to sinks, while also been twice as
fast. In addition, MaMaDroid is designed to detect malware irrespective of the malware family,
whereas TriFlow may not be able to detect malware families that do not require information flow
from sources to sink to act maliciously, e.g., ransomeware.

AppContext [74] models the context of security-sensitive behaviors (permission-protected meth-
ods, methods used for reflection and dynamic code loading, and sources and sinks methods) as
a tuple of activation events or environmental attributes to differentiate between malware and
benign apps. Whereas AppContext models the behavior of an app by building call graphs to specific
API calls (those defined as security-sensitive), MaMaDroid takes a holistic approach, capturing
all API calls. Due to this targeted characteristic of AppContext, it is about 10 times slower than
MaMaDroid, while also being less effective with F-measure of 0.9 when the complete context
is used compared to 0.96/0.97 achieved by MaMaDroid (with the drebin/2013 and oldbenign
datasets, which are around the same timespan as that used by AppContext).
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Dynamic Analysis. Dynamic analysis has also been applied to detect Android malware by using
predefined scripts of common inputs that will be performed when the device is running. However,
this might be inadequate due to the low probability of triggering malicious behavior, and can be side-
stepped by knowledgeable adversaries, as suggested by Wong and Lie [68]. Other input approaches
include random fuzzing [42, 76] and concolic testing [2, 27]. Dynamic analysis can only detect
malicious activities if the code exhibiting malicious behavior is actually running during the analysis.
Moreover, according to Vidas and Christin [65], mobile malware authors often employ emulation
or virtualization detection strategies to change malware behavior and eventually evade detection.
Also related to MaMaDroid is AuntieDroid [50], which applies MaMaDroid’s technique in a
dynamic analysis setting by modeling the behavior of apps using traces produced from executing
the apps in a virtual device.
Machine Learning. Machine learning techniques have also been applied to assist Android malware
detection. Chen et al. [15] proposed Kuafudet that uses a two-phase learning process to enhance
detection of malware that attempts to sabotage the training phase of machine learning classifiers.
Also, Jordaney et al. [34] proposed Transcend which is a framework for identifying aging machine
learning malware classification models, i.e., using statistical metrics to compare the samples used
for training a model to new unseen samples to predict degradation in the detection accuracy
of the model. Recently, MalDozer [35] applies deep learning on the sequence of API methods,
following MaMaDroid’s approach. While MalDozer also discusses its effectiveness over time, it
is more susceptible to changes to the Android API framework due to its use of API method calls
which are sometimes deprecated with new releases. Hou et al. introduced HinDroid [32], which
represents apps and API calls as a structured heterogeneous information network, and aggregates
the similarities among apps using multi-kernel learning.

Note that we have also experimented with deep learning, finding that Random Forests and k-NN
perform better. We believe this might be due to the fact that deep learning derives its own features
used in distinguishing between the classes as compared to MaMaDroid, which is designed to use
statistical methods such as Markov chains.
App’s Manifest. Features such as permissions, intent filters, etc. have also been used to distinguish
between malicious and benign apps. Droidmat [70] uses API call tracing and manifest files to learn
features for malware detection, Teufl et al. [62] apply knowledge discovery processes and lean
statistical methods on app metadata extracted from the app market, while [25] rely on embedded
call graphs. DroidMiner [73] studies the program logic of sensitive Android/Java framework API
functions and resources, and detects malicious behavior patterns. MAST [12] statically analyzes
apps using features such as permissions, presence of native code, and intent filters and measures
the correlation between multiple qualitative data.
Crowdroid [8] relies on crowdsourcing to distinguish between malicious and benign apps by

monitoring system calls, while RevealDroid [24] employs supervised learning and obfuscation-
resilient methods targeting API usage and intent actions to identify their families. Drebin [4]
deduces detection patterns and identifies malicious software directly on the device, performing a
broad static analysis. This is achieved by gathering numerous features from the manifest file as
well as the app’s source code (API calls, network addresses, permissions). Malevolent behavior is
reflected in patterns and combinations of extracted features from the static analysis: for instance,
the existence of both SEND_SMS permission and the android.hardware.telephony component in an
app might indicate an attempt to send premium SMS messages, and this combination can eventually
constitute a detection pattern.
DroidAPIMiner. In Section 4.5, we have already compared against [1]. This system relies on the
top-169 API calls that are used more frequently in the malware than in the benign set, along with
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data flow analysis on calls that are frequent in both benign and malicious Android apps, but occur
up to 6% more in the latter. As shown in our evaluation, using the most common calls observed
during training requires constant retraining, due to the evolution of both malware and the Android
API. On the contrary, MaMaDroid can effectively model both benign and malicious Android apps,
and perform an efficient classification on them. Compared to DroidAPIMiner, our approach is
more resilient to changes in the Android framework, resulting in a less frequent need to re-train
the classifier. Overall, compared to both Drebin [4] and DroidAPIMiner [1], MaMaDroid is more
generic and robust as its statistical modeling does not depend on specific app characteristics, but
can actually be run on any app created for any Android API level.

Markov Chains. Finally, Markov-chain based models for Android malware detection like that
proposed by Chen et al. [17] dynamically analyze system- and developer-defined actions from
intent messages (used by app components to communicate with each other at runtime), and
probabilistically estimate whether an app is performing benign or malicious actions at run time, but
obtain low accuracy overall. Canfora et al. [11] follow two approaches in the detection of malware:
1) a Hidden Markov model (HMM) to identify known malware families, whereas MaMaDroid is
designed to detect previously unseen malware, irrespective of the family; 2) a structural entropy that
compares the similarity between the byte distribution of the executable file of samples belonging
to the same malware families.

10 CONCLUSION

This paper presented MaMaDroid, an Android malware detection system that is based on
modeling the sequences of API calls as Markov chains. Our system is designed to operate in one of
three modes, with different granularities, by abstracting API calls to either families, packages, or
classes. We ran an extensive experimental evaluation using, to the best of our knowledge, one of the
largest malware datasets in an Android malware detection research paper, aiming at assessing both
the accuracy of the classification (using F-measure, Precision, and Recall) and runtime performances.
We showed that MaMaDroid effectively detects unknown malware samples developed around
the same time as the samples on which it is trained (F-measure up to 0.99). It also maintains good
detection performance: one year after the model has been trained with an F-measure of 0.86, and
0.75 after two years.

We compared MaMaDroid to DroidAPIMiner [1], a state-of-the-art system based on API calls
frequently used bymalware, showing that, not only doesMaMaDroid outperformsDroidAPIMiner
when trained and tested on datasets from the same year, but that it is also much more resilient
over the years to changes in the Android API. We also developed a variant of MaMaDroid, called
FAM, that performs API call abstraction but is based on frequency analysis to evaluate whether
MaMaDroid’s high detection accuracy is based solely on the abstraction. We found that FAM
improves on DroidAPIMiner but, while abstraction is important for high detection rate and
resilience to API changes, abstraction and a modeling approach based on frequency analysis is
not as robust as MaMaDroid, especially in scenarios where API calls are not more frequent in
malware than in benign apps.

Overall, our results demonstrate that statistical behavioral models introduced by MaMaDroid—
in particular, abstraction and Markov chain modeling of API call sequence—are more robust than
traditional techniques, highlighting how our work can form the basis of more advanced detection
systems in the future. As part of future work, we plan to further investigate the resilience to possible
evasion techniques, focusing on repackaged malicious apps as well as injection of API calls to
maliciously alter Markov models. We also plan to explore the possibility of seeding the behavioral
modeling performed by MaMaDroid with dynamic instead of static analysis.
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