
Journal of Information Security and Applications 72 (2023) 103398

A
2
n

D
l
A
C

A

K
A
H
N
F
M
M

1

w
S
t
m
a
a
i
m
a
a
a
m
o
a

t
i
i
t
d

h

Contents lists available at ScienceDirect

Journal of Information Security and Applications

journal homepage: www.elsevier.com/locate/jisa

efending against adversarial machine learning attacks using hierarchical
earning: A case study on network traffic attack classification
ndrew McCarthy ∗, Essam Ghadafi, Panagiotis Andriotis, Phil Legg
omputer Science Research Centre, University of the West of England, Bristol, UK

R T I C L E I N F O

eywords:
dversarial learning
ierarchical classification
etwork traffic analysis
unctionality preservation
achine learning
odel robustness

A B S T R A C T

Machine learning is key for automated detection of malicious network activity to ensure that computer
networks and organizations are protected against cyber security attacks. Recently, there has been growing
interest in the domain of adversarial machine learning, which explores how a machine learning model can
be compromised by an adversary, resulting in misclassified output. Whilst to date, most focus has been given
to visual domains, the challenge is present in all applications of machine learning where a malicious attacker
would want to cause unintended functionality, including cyber security and network traffic analysis. We first
present a study on conducting adversarial attacks against a well-trained network traffic classification model.
We show how well-crafted adversarial examples can be constructed so that known attack types are misclassified
by the model as benign activity. To combat this, we present a novel defensive strategy based on hierarchical
learning to help reduce the attack surface that an adversarial example can exploit within the constraints of
the parameter space of the intended attack. Our results show that our defensive learning model can withstand
crafted adversarial attacks and can achieve classification accuracy in line with our original model when not
under attack.
. Introduction

Cyber security and the protection of associated computer and net-
ork systems is fundamental for most organizations. The recent Cyber
ecurity Breaches survey 2022 conducted by the UK Government found
hat 39% businesses had experienced a cyber attack in the last 12
onths, with the average cost of a cyber attack currently estimated

s £2.2 million [1]. The sheer scale and magnitude of modern cyber
ttacks requires automated response and intervention. Machine learn-
ng (ML) is becoming widely used for the detection and classification of
alicious network activity to aid the response to cyber attacks, where
mathematical model is learned to relate input feature observations to
set of possible output classes. For the classification of network traffic

ttacks, input features may be derived from the observed network com-
unications and packet header information, which may be indicative

f either benign traffic, or a malicious attack such as a Denial of Service,
Remote Access Trojan, a BotNet, or other network-based attack.

Whilst machine learning can help manage this wealth of informa-
ion, it is not without limitation. Recent years have seen a growing
nterest in the domain of adversarial machine learning [2] that seeks to
dentify well-crafted examples that knowingly force misclassification by
he model. This has been particularly effective in the computer vision
omain since the manipulation of few input features (i.e., image pixels)

∗ Corresponding author.
E-mail address: andrew6.mccarthy@uwe.ac.uk (A. McCarthy).

may inadvertently adjust the performance of the model without being
noticeable to the human observer, due to small perturbations of pixel
intensity values. The challenge in adversarial learning is to determine
which features are most susceptible such that a minimal change can
result in misclassification by the model, whilst the overall input to the
model appears unchanged or unaltered to the human observer. Drawing
a parallel to the challenge of network traffic classification, a malicious
attack should exhibit the same characteristics such that the activity is
still deemed as malicious, whilst identifying the minimal amount of
perturbation in the derived features such that the model believes the
observation to be benign, hence resulting in misclassification. We refer
to this characteristic as functionality preservation.

In this paper, we first examine the impact of adversarial attack
generation against a well-trained network traffic classification model,
and show the performance degradation. To combat this, we present
a novel defensive strategy based on hierarchical learning to help
reduce the attack surface that an adversarial example can exploit
within the constraints of the parameter space of the intended attack.
Our results show that our defensive learning model can withstand
crafted adversarial attacks and can achieve classification accuracy in
line with our original model when not under attack.

The primary contributions of our work are:
vailable online 17 December 2022
214-2126/© 2022 The Author(s). Published by Elsevier Ltd. This is an open access ar
c-nd/4.0/).

ttps://doi.org/10.1016/j.jisa.2022.103398
ticle under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-

https://www.elsevier.com/locate/jisa
http://www.elsevier.com/locate/jisa
mailto:andrew6.mccarthy@uwe.ac.uk
https://doi.org/10.1016/j.jisa.2022.103398
https://doi.org/10.1016/j.jisa.2022.103398
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jisa.2022.103398&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

Journal of Information Security and Applications 72 (2023) 103398A. McCarthy et al.
• We provide the first comprehensive study of applying
functionality-preserving adversarial learning attacks against
a multi-class network traffic classification model, and demon-
strate successful attack misclassification within a constrained
attack parameter space. 90.25% of the attacks were able to evade
detection of a well-trained classifier, while also constraining the
parameter space to preserve functionality.

• We propose a novel defensive strategy based on hierarchical
learning to reduce the attack surface that an adversarial example
can exploit within the constraints of the parameter space of the
intended attack, achieving classification accuracy in line with our
original model when not under attack.

The remainder of the paper is structured as follows: Section 2
presents the related works on adversarial machine learning exploring
both the creation of attacks, and the defense against attacks; Section 3
presents our study on the creation of adversarial attacks against a
well-trained network traffic classification model; Section 4 presents
our novel defensive strategy based on hierarchical learning; Section 5
provides discussion of the research on model robustness, attack trans-
ferability, and limitations of hierarchical classification; and Section 6
concludes the work and considers future directions.

2. Related work

Our related works section addresses relevant topics of adversar-
ial machine learning, functionality preservation with feature pertur-
bations, localized classification, and machine learning-based intru-
sion detection. We also draw upon our previous works on survey-
ing functionality-preserving attacks [3], and feature vulnerability and
robustness in network traffic analysis [4].

2.1. Adversarial machine learning

Unfortunately, machine learning systems are susceptible to carefully
crafted attacks that aim to yield an arbitrary, or specific, misclassifica-
tion. Szegedy et al. [5] first found that imperceptible perturbations of
input values can result in significant differences in the output of a ML
classifier. Adversarial machine learning has been a research topic for
over a decade and is now an accepted topic with open problems.

Papernot et al. [6] note the security and privacy of ML is an active
but nascent area of research. In this early work, they systematize their
findings on security and privacy in machine learning. Indicating that
a science for understanding the vulnerabilities of ML and counter-
measures is slowly emerging. They utilize the classical confidentiality,
integrity and availability (CIA) model to analyze: training in adversarial
settings; inferring adversarial settings; robust, fair, accountable, and
private ML models. Their analysis points toward two related notions
of sensitivity. The sensitivity of learning models to their training data
is essential for privacy-preserving ML, and similarly, the sensitivity to
inference data is essential for secure ML. The crux of both notions
of sensitivity is the generalization error (i.e. the gap between perfor-
mance on training and test data). They focus on attacks and defenses
for machine learning systems aiming to further understanding of the
sensitivity of modern ML algorithms to input data and foster a science
of privacy and security in machine learning.

A primary focus of this work is how adversarial examples might
translate to the cyber security domain. A further complication in this
domain is that of functionality preservation. In cyber security domains,
it is critical that an intrusion detection classifier correctly identifies
malicious traffic while minimizing false positive and false negative
results since identifying truly malicious activity in a profusion of false
positives is problematic. ML performance can be evaluated by accuracy,
precision, recall, and other metrics such as F1-Score.

Zhang and Li [7] discuss opportunities and challenges arising from
adversarial examples. They survey state-of-the-art adversarial example
2

generation methods and defenses before raising future research op-
portunities and challenges. They note three challenges for adversarial
example construction:

1. The difficulty of building a generalizable method.
2. The difficulty in controlling the size of perturbation (too small

will not result in adversarial examples, and too large can easily
be perceived).

3. Difficulty in maintaining adversarial stability in real-world ap-
plications (some adversarial examples do not hold for transfor-
mations such as blurring).

They identify black-box attacks as a challenge for defenses. Because
black-box attacks require zero-knowledge of the model architecture and
therefore might not be easily resisted by modifying the model archi-
tecture or parameters. Second, defenses are often specific to a single
attack method and are often less suitable as a general defense. They
subsequently identify an opportunity for highly transferable adversarial
examples (high confidence).

2.2. Threat model

A realistic threat model can help harden intrusion detection systems
by prioritizing the smaller subset of attacks that are realistic [8]. We
present the following threat model considering the strengths and weak-
nesses of an adversary’s possible strategies. Adversarial attacks can be
designated as either poisoning attacks or inference-time attacks. Poison-
ing attacks affect the training phase and aim to influence classification
by augmenting the training dataset with new samples or modifying
existing samples. Inference attacks aim to influence classification by
leveraging the sensitivity of the model to its training data. Typical
strategies include gradient descent [9] and Generative Adversarial
Networks (GANS) [10]. Such attacks are commonly known as evasion
attacks. The goal of an attacker may be to misclassify malicious samples
as benign; however, it is plausible that an attacker could gain advantage
by causing misclassification between malicious classes [4].

There are three main types of adversarial attack: white-box, black-
box, and gray-box. White-box attacks assume complete knowledge of
the target model. Black-box attacks assume zero-knowledge of the
system; although an adversary might optionally acquire knowledge
through exploiting ‘oracle’ attack strategies using multiple queries in-
crementally modifying a malicious sample until it is misclassified. An
alternative strategy requires the adversary to create a surrogate model.
The goal here is to employ the transferability property of adversarial ex-
amples. Adversarial examples generated on the surrogate may transfer
and subsequently successfully fool the target model. An attacker with
‘oracle’ access might be able to reverse-engineer the target model to
generate a surrogate model; however, Apruzzse [8] rightly indicates
that using a NIDS as an oracle is complex and demanding, feasible
only in limited scenarios. Adversaries choosing this route face two
obstacles: Querying the target model while stealthily avoiding detection
forcing a low-and-slow approach; Acquiring feedback is difficult in IDS
because the output of the model may not be directly observable to the
adversary.

Fortunately, ‘oracle’ access is unnecessary for the creation on a
surrogate model. Papernot et al. [11] states that adversarial examples
affecting one model often affect another model, even where the models
have different architectures or were trained on different training sets.
For transferable adversarial examples it is sufficient that both models
were trained to perform the same task. An adversary may train their
own surrogate model, craft adversarial examples against the surrogate,
and transfer them to the target with very little knowledge of the target
model. Recently, Yang et al. [12] examined the adversarial transfer-
ability of surrogate models. Specifically they claim the adversarial
transferability of a surrogate model can be improved when any model
for the same task is used to extract and leverage soft (probabilistic)

labels to train a surrogate model without querying the target model.

Journal of Information Security and Applications 72 (2023) 103398A. McCarthy et al.
Gray-box attacks assume partial knowledge of the target model. For
example, an adversary might have some knowledge of the features used
by the model. Indeed this is likely. By necessity all ML IDS analyze
either raw network traffic or derived metadata [8]. ML IDS systems
are likely to be trained on network flows [13]. A skillful adversary with
sufficient domain knowledge could estimate which features are likely
to be used and how they could impact performance.

2.3. Functionality preserving adversarial examples

Apruzzese et al. [8] examine adversarial examples to consider re-
alistic attacks, highlighting that most literature considers adversaries
with complete knowledge about the classifier who are free to interact
with the target systems. They emphasize that few works consider ‘re-
alizable’ perturbations that take account of domain and/or real-world
constraints. Commonly black-box attacks assume adversaries are able
to repeatedly query an ‘oracle’ model. The attacker may iteratively and
incrementally perturb samples. At each iteration, a sample is presented,
and the output is examined, pursuant to determining model decision
boundaries and ultimately achieving misclassification. Such ‘oracle’
attacks are challenging. Each query increases the risk that the strategy
will be detected and the attack foiled. Moreover, direct output from
an intrusion detection system (IDS) is not easy to achieve. Apruzzese
et al. [8] consider situations where such attacks gain feedback while
remaining undetected. However, they acknowledge that such attacks
require persistence, skill, and resources. Transferability attacks avoid
these problems because the oracle access to the target model is unnec-
essary as the target is not queried. An adversary can build a surrogate
model for the same task on which to generate adversarial examples,
subsequently transferring them to the target model.

Sheatsley et al. [14] advise that most adversarial examples in cy-
berdetection domains violate one or more domain constraints. More-
over, they find that crafting adversarial examples in constrained do-
mains requires a different process to unconstrained domains. They
argue that constrained domains are inherently more robust against
adversarial examples. Further, they posit that the exploitable threat
surface of models in constrained domains is likely narrower than pre-
viously understood; however, we stress that it is important not to
take succour from this statement. The attack surface may be narrower;
however, carefully crafted attacks can nevertheless successfully exploit
it.

Apruzzse allege that a misconception exists in the literature in that
much research pursues ‘minimal’ perturbations. They claim that in real-
ity adversaries are not bound by this constraint [15]. We acknowledge
that adversaries will use any suitable method to fool the classifier, re-
gardless the size of perturbation; However, we do not consider this final
and decisive. Adversaries exist in a arms-race environment. Defenses
are continually improving, and adversaries must adapt their strategies.
The stark reality is that large perturbations are more easily detected
by statistical measures [16]. Smaller perturbations are less easily de-
tected and therefore confer advantages to adversaries who wish to hold
persistence and remain undetected for a period of time. Furthermore,
large perturbations do not necessarily confer an additional advantage
over smaller perturbations. Domain constraints might be broken by
large and small perturbations alike. We predict that the future trend
of adversarial examples in NIDS will be to constrain the adversarial
example in scope, size, or both. Specifically, we predict perturbations
to small combinations of increasingly fewer features to a lesser degree.
The Adversarial Robustness Toolbox (ART) [17] allows feature masks to
exclude certain (constrained) features from perturbation. In this work
we carefully limit the scope of our perturbations to one feature (gamma
3

= 0.05, and the size of perturbation to 0.02 (theta = 0.02)
2.4. Intrusion detection

Zhang et al. [13] note common classification methods for inter-
net traffic are based on statistical properties captured as netflows.
This method addresses problems of dynamic port numbers and pro-
tects user privacy. Systems can be deployed to search for patterns in
the netflows. Most such systems employ machine learning to perform
automated classification of traffic types, detecting and/or dropping
malicious traffic.

Wu et al. [18] consider several types of deep learning systems
for network attack detection, including supervised and unsupervised
models to compare the efficiency and effectiveness of different attack
detection methods using two intrusion detection datasets: ‘‘KDD Cup
99’’ dataset and an improved version known as NSL-KDD [19] [20].
These datasets are commonly used; however, they do not fairly rep-
resent modern network traffic analysis problems due to concept-drift.
Networks have increasing numbers of connected devices, increasing
communications per second, and new applications using the network.
Moreover, the use of computer networks and the Internet has changed
substantially in twenty years. The continued introduction of IPv6,
Network address Translation, Wi-Fi, mobile 5G networks, and cloud
providers has changed network infrastructure [21]. Furthermore, the
internet is increasingly used for financial services. Akamai [22] report
financial services see millions or tens of millions of attacks each day.
These attacks were less common twenty years ago. Furthermore, social
media constitutes much of today’s internet traffic and most social media
platforms were founded after the KDD Cup 99 and NSL-KDD datasets
were introduced. For example, Facebook, YouTube, and Twitter were
founded in 2004, 2005, and 2006 respectively but are now in the top
five most visited sites [23].

Kok et al. [24] warn the dangerous trend of using outdated datasets
could result in no or insufficient progress on IDS. This would ultimately
lead to an untenable situation, with obsolete intrusion detection sys-
tems (IDS) while intrusion attacks continuously evolve along with user
behavior and the introduction of new technologies.

Martins et al. [25] note that IDS are typically signature-based and
that machine learning approaches are being widely employed for intru-
sion detection. They describe common white-box methods to generate
adversarial examples including: Broyden–Fletcher–Goldfarb–Shanno al-
gorithm (L-BFGS), Fast Gradient Sign Method (FGSM), Jacobian-based
Saliency Map Attack (JSMA), Deepfool, and Carlini & Wagner attacks
(C&W). They also consider black-box methods using Generative Ad-
versarial Networks (GANS). Traditional GANS sometimes suffer prob-
lems of mode collapse. Wasserstein Generative Adversarial Networks
(WGANS) solve some of these problems. They introduce the Zeroth-
order optimization attack (ZOO) as a black-box method. ZOO estimates
the gradient and optimizes an attack by iteratively adding perturbations
to features. They note that most attacks have been initially tested in
the image domain, but can be applied to other types of data, which
poses a security threat. Furthermore, they consider there is a trade-
off when choosing an adversarial attack. For example, JSMA is more
computationally intensive than FGSM, but modifies fewer features.
They consider JSMA to be the most realistic attack because it per-
turbs fewer features However, variations of FGSM and other methods
can be configured to modify certain features [26], making other less
computationally intensive attacks potentially realizable.

2.5. Model training for robust models

The trustworthiness and quality of a model is impacted by the
distribution, quality, quantity, and complexity of dataset training sam-
ples [27]. Biased models are more susceptible to adversarial examples.
Therefore models should be trained on unbiased training data; although
Johnson et al. consider the absolute number of training samples may be
more important than the ratio of class imbalance [28]. Cybersecurity

datasets are often prone to bias, partly because of limited samples of

Journal of Information Security and Applications 72 (2023) 103398A. McCarthy et al.
some malicious traffic (E.g. zero-day attacks) and large amounts of
benign traffic. Sheatsley et al. [29] state biased distributions enable
successful adversarial examples with very few feature modifications.
Common data-level techniques tackle biased datasets by resampling:
oversampling, undersampling, and hybrid sampling by combining mod-
est oversampling of minority classes and modest undersampling of
majority classes, aiming to give better model performance than apply-
ing either technique alone. Algorithm-level techniques tackling dataset
bias commonly employ cost-sensitive learning where a class penalty
or weight is considered or decision thresholds are shifted to reduce
bias [28].

2.6. Robustness

Robustness can be defined as the performance of well-trained mod-
els facing adversarial examples [30]. Essentially, robustness considers
how sensitive a model’s output is to a change in the input. The robust-
ness of a model is related to the generalization-error of the model. A
recognized trade-off exists between accuracy and robustness in machine
learning. That is, highly accurate models are less robust to adversarial
examples. Machine learning models in adversarial domains must be
both highly accurate and robust. Therefore, improving the robustness
of machine learning models enables safer deployment of ML systems
across a wider range of domains, including IDS. To critically evaluate
and make fair comparisons of the robustness of a model under attack,
robustness metrics are necessary. Common machine learning metrics
can be used to provide consistency, such as Precision, Recall, and
F1-Score.

2.7. Common defences

Some research considers how model weights can be used to disrupt
generation of adversarial examples using white-box methods [31,32].
However, these defenses can be bypassed by using black-box methods.
Much research considers the detection of adversarial examples by
considering whether a sample is out of distribution [16,33]. Detection is
hard because adversarial examples do not exhibit intrinsic properties.
Moreover, many detection methods are susceptible to good attacker-
loss functions [34]. Adversarial training is a simple method aiming
to improve robustness; however, it is not scalable. Moreover, Tramér
et al. [35] found adversarial training can be bypassed. Some research
investigates hardening the architecture of the model. Perhaps, changing
model parameters or employing ensembles [2]. Defensive dropout uses
a dropout layer and can block black-box and transferability-based at-
tacks [36]. Adversarial defenses exist in an arms race where adversaries
adapt to defenses by adopting new strategies. Therefore, defenses must
remain secure against adversaries who understand our model defenses.

2.8. Ensemble classification

Biggio [2] asserts that ensemble classifiers have been exploited to
improve robustness; however, they must be properly constructed to
avoid worsening robustness. A typical ensemble classifier often used
in intrusion detection is a Random Forest (RF) [37]. Other state-of-
the-art ensemble classifiers include XGBoost, Histogram-based Gradient
Boosting Classifier (HBBC), and Light Gradient Based Machine (LGBM).
These ensemble classifiers help with robustness because their con-
struction generates multiple randomized estimators. This complicates
the task of generating attacks capable of fooling all (or most) of the
estimators. Some research focuses on how ensembles of estimators with
opposing or different gradients can help robustness [38]. Hierarchical
classification, also known as multilevel classification, is a form of
ensemble classifier, where multiple classifiers are usually arranged in a
top-down hierarchy.
4

3. Adversarial attack of a network traffic classification model

To examine the nature of adversarial attacks, we first develop a
well-trained machine learning model for network traffic classification.
We use the Python programming language for our development, along
with the popular machine learning libraries, Keras [39] and scikit-
learn [40]. We also use the Adversarial Robustness Toolbox (ART) [17]
to support the construction of the adversarial examples. All experiments
were performed using a variant of the CICIDS 2017 dataset as detailed
below.

3.1. Preparing the CICIDS 2017 dataset

The Canadian Institute for Cybersecurity IDS 2017 dataset (CI-
CIDS2017) [41] is a recent addition to modern IDS datasets that has
become increasingly popular amongst researchers. The dataset con-
sists of a packet capture trace across a multi-system infrastructure
for a period of 5 days, denoting both benign traffic activity as well
as 14 common attacks including Brute Force FTP, Brute Force SSH,
Denial of Service (DoS), Heartbleed, Web Attack, Infiltration, Botnet,
and Distributed-Denial of Service (DDoS). The data are available as a
series of packet capture (PCAP) files, as well as a ‘‘ML-ready’’ set of
features in CSV format, derived using their CICFlowMeter tool [42,43]
that derives features of the communication flow between two parties,
similar to Cisco Netflow [44]. Recently, Engelen et al. [45] reported
on errors that occur from the use of the CICFlowMeter tool that are
also present in the ‘‘ML-ready’’ dataset. The authors resolve the issues
with the CICFlowMeter tool, and provide both a new version of the
software tool as well as a corrected copy of the dataset, that is, a more
accurate derivation of the intended features in the original PCAP. For
the purpose of our study, we now use the dataset made available by
Engelen et al. [45].

Typical features for each flow include: Flow Duration, Packet Statis-
tics, Flow Bytes/s, Flow Packets/s, IAT Statistics, Flags, Header Length,
Down/Up Ratio, Bulk Statistics, Subflow Statistics, Init Win bytes,
Active data packets forward, Active Statistics, and Idle Statistics. A set
of 25 possible classes are derived in the improved labeling of the CI-
CIDS2017 dataset, since some attacks that had previously been labeled
had not successfully executed (e.g., did not result in data transmission).
These attack labels are appended with the label ‘‘Attempted’’.

Class imbalance can skew the assessment of model performance.
Inevitably for this domain, the benign class exhibits many more samples
compared to the attack classes (see Table 1). To overcome this, we
combine oversampling and undersampling techniques in sequence to
effectively balance the dataset [46]. We also cleanse the dataset to
remove all instances that consist of null entries. Our balanced dataset
results in 7500 samples (300 samples per class), which we consider
sufficient for the purpose of our case study.

3.2. Initial classification model

We train a multi-class classifier using a scikit-learn MLP model, that
we will refer to as our target model. The model consists of three dense
layers and is trained for a maximum of 300 iterations. We pre-process,
scale, and split the resampled dataset into train and test samples
(0.7/0.3 split). We use the Adam optimizer to train the target model,
to produce a well-trained model. Table 2 shows the performance of the
classifier. We use the standard metrics of accuracy, precision, recall,
and F1-scores. The support column indicates the number of occurrences
of the class in the specified sample. The target model achieves an
accuracy of 91%, with precision of 91%, recall of 93%, and f1-scores
of 89%.

To overcome the issue of ‘oracle’ attacks and transferability of
adversarial examples [11], in addition to our target model we also
train a surrogate neural network model for the same intrusion detection
task. Whilst superficially similar to our target model, we utilize an

Journal of Information Security and Applications 72 (2023) 103398A. McCarthy et al.
Table 1
Details of the CICIDS2017 dataset. For each data file (ordered by date), we show the attack types covered, the number of class samples for
each attack, and the number of benign samples included in each data file. The dataset ratio column shows classes considered over-represented
at a per file level are still under-represented in the dataset as a whole when the sum off all benign samples are used to calculate the dataset
ratio.
File Traffic type Class samples Benign samples File ratio Dataset ratio

Monday BENIGN 529 918 529 918 1.00000 1.0000000
Tuesday FTP-Patator 7938 432 074 0.01837 0.0034922

SSH-Patator 5897 – 0.01365 0.0025943
Wednesday DoS GoldenEye 10 293 440 031 0.02339 0.0045282

DoS Hulk 231 073 – 0.52513 0.1016556
DoS Slowhttptest 5499 – 0.01250 0.0024192
DoS slowloris 5796 – 0.01317 0.0025498
Heartbleed 11 – 0.00002 0.0000048

Thursday-Morning-WebAttacks Web Attack - Brute Force 1507 168 186 0.00896 0.0006630
Web Attack - Sql Injection 21 – 0.00012 0.0000092
Web Attack - XSS 652 – 0.00388 0.0002868

Thursday-Afternoon-Infilteration Infiltration 36 288 566 0.00012 0.0000158
Friday-Morning Bot 1966 189 067 0.01040 0.0008649
Friday-Afternoon-DDoS DDoS 128 027 97 718 1.31017 0.0563227
Friday-Afternoon-PortScan PortScan 158 930 127 537 1.24615 0.0699178
Table 2
Target model and surrogate model classification reports.

Target model Surrogate model

Precision Recall F1-Score Support Precision Recall F1-Score Support

BENIGN 0.75 0.96 0.84 79 0.88 0.98 0.93 92
Bot - Attempted 1.00 0.98 0.99 105 1.00 0.98 0.99 105
Bot 1.00 0.48 0.65 170 1.00 0.49 0.66 167
PortScan 0.98 1.00 0.99 92 1.00 1.00 1.00 94
DDoS 0.97 1.00 0.98 94 0.99 1.00 0.99 96
Web Attack - Brute Force 0.99 0.83 0.91 115 0.97 0.78 0.86 121
Web Attack - Brute Force - Attempted 1.00 0.96 0.98 85 0.99 0.99 0.99 82
Infiltration - Attempted 0.78 0.96 0.86 73 0.68 1.00 0.81 61
Infiltration 1.00 0.96 0.98 105 1.00 1.00 1.00 101
Web Attack - XSS - Attempted 1.00 0.99 0.99 87 0.99 0.96 0.97 89
Web Attack - XSS 0.97 0.99 0.98 88 1.00 1.00 1.00 90
Web Attack - Sql Injection 1.00 1.00 1.00 76 0.99 0.99 0.99 76
FTP-Patator 1.00 1.00 1.00 82 1.00 1.00 1.00 82
SSH-Patator 1.00 0.98 0.99 91 1.00 0.99 0.99 90
FTP-Patator - Attempted 1.00 1.00 1.00 100 1.00 1.00 1.00 100
SSH-Patator - Attempted 1.00 0.99 0.99 92 1.00 1.00 1.00 91
DoS slowloris 0.06 1.00 0.11 5 0.08 1.00 0.14 7
DoS slowloris - Attempted 1.00 1.00 1.00 93 0.98 0.99 0.98 92
DoS Slowhttptest 0.99 1.00 0.99 99 0.99 0.99 0.99 100
DoS Slowhttptest - Attempted 1.00 1.00 1.00 75 1.00 1.00 1.00 75
DoS Hulk 0.99 0.99 0.99 85 0.98 1.00 0.99 83
DoS Hulk - Attempted 0.55 0.61 0.58 82 0.55 0.59 0.57 85
DoS GoldenEye 1.00 0.95 0.97 76 1.00 0.97 0.99 74
Heartbleed 0.99 0.94 0.96 96 1.00 0.96 0.98 95
DoS GoldenEye - Attempted 0.68 0.59 0.63 105 0.63 0.56 0.59 102

Macro average 0.91 0.93 0.89 2250 0.91 0.93 0.90 2250
Accuracy 0.91 0.91
alternative framework (Keras) to construct this. Since the two models
are known to be similar and are trained with portions of a freely
available dataset the approach is intended to be representative of a
black-box attack however may well be considered to be a grey-box
attack, since we inevitably have some knowledge of our underlying
models. As with the target model, the surrogate model consists of three
dense layers and a softmax activation layer. We use sparse categorical
cross-entropy as our loss function, together with the Adam optimizer, to
train our model for 200 epochs with an early stopping patience of 50.
Table 2 shows that the model achieves an accuracy comparable to that
of our target model (accuracy of 91%, with precision of 91%, recall
of 93%, and F1-Scores of 90%). Fig. 1 shows the confusion matrix of
both the (a) target model and the (b) surrogate model to evaluate the
5

performance of each individual class and to assess misclassification.
3.3. Using the surrogate model to attack the target model

From the adversarial perspective, we intend to cause the target
model to misclassify, often referred to as an evasion attack. Adversar-
ial attacks can be performed on binary and multi-class classification
systems, and typically fall into 3 groups: white-box; black-box; and
gray-box attacks. White-box attacks provide full knowledge of the
model, and access to the model. Many white-box attacks rely on the
use of gradient descent search. Grey-box models assume some partial
knowledge of the model. Black-box attacks offer zero knowledge of the
model, and ‘oracle’ attacks are impractical for intrusion detection do-
main [8]. Therefore, some black-box attacks rely on the transferability
properties of adversarial examples using a surrogate model [47]. This

is the approach we take, whereby we generate adversarial examples

Journal of Information Security and Applications 72 (2023) 103398A. McCarthy et al.
Fig. 1. Confusion matrix for (a) Target model (Scikit-learn), (b) Surrogate model (Keras).
Fig. 2. Untargeted JSMA (𝜃 = 0.05 and 𝛾 = 0.02) against (a) Target model (Scikit-learn), (b) Surrogate model (Keras).
for our surrogate model using the Jacobian-based Saliency Map Attack
(JSMA) [9,48], which are then tested against our target model.

Fig. 2 shows the confusion matrix of untargeted JSMA on both (a) the
target model and (b) the surrogate model, where 𝜃 = 0.1 and 𝛾 = 0.1.
These two parameters specify the amount of perturbation to introduce
to the original feature set (𝜃) and the maximum fraction of features
to influence (𝛾). Both confusion matrices now exhibit a large amount
of misclassification between the predicted labels and the ground-truth
labels. It is important to reiterate that the adversarial examples were
crafted against the surrogate model using JSMA, and then tested against
the target model.

Fig. 3 shows a similar effect for targeted JSMA. The untargeted
attack does not specify the desired label to misclassify a sample as,
whereas for the targeted attack we specifically want to misclassify each
attack as benign. The surrogate model is significantly impacted and the
majority of samples are successfully misclassified as benign (Fig. 3(b)).
For the target model, whilst the effect of targeted misclassification to
the benign class is not quite as prominent, nevertheless, the model
performance is still severely degraded (Fig. 3(a)).
6

3.4. Functionality-preservation of adversarial example generation

Adversarial attacks in computer vision rely on the manipulation of
features (i.e., pixel intensity) that are unnoticeable to the human visual
system. In our case study, whilst it is possible to manipulate features to
provoke misclassification, it is important to assess whether the resulting
features remain within the expected distribution of the data, such
that it may be feasible to curate an attack that remains unnoticeable
to a human observer, whilst exhibiting the intended underlying at-
tack behavior. We perform systematic experimentation with the JSMA
parameters 𝜃 and 𝛾. We conducted our experiment using all paired
combinations of 𝜃 = (0.8, 0.5, 0.1, 0.05) and 𝛾 = (0.8, 0.5, 0.1, 0.05, 0.02),
and study the feature distribution in comparison to the statistical
distribution of the original data.

Fig. 4 shows a parallel coordinates plot for a subset of the feature do-
main, to highlight the minimum, maximum and median of features for
both the original dataset and the compromised adversarial examples.
We observe that the discrepancies between the original data and the
adversary examples are clearly visible with JSMA parameters 𝜃 = 0.1
and 𝛾 = 1.0. Therefore, the crafted examples may either be clearly

Journal of Information Security and Applications 72 (2023) 103398A. McCarthy et al.
Fig. 3. Targeted JSMA for benign class (𝜃 = 0.05 and 𝛾 = 0.02) against (a) Target model (Scikit-learn), (b) Surrogate model (Keras).
Fig. 4. Parallel Coordinates to show the distribution of original features versus JSMA features (𝜃 = 0.1 and 𝛾 = 1.0). It can be observed that the perturbed JSMA features significantly
exceed the expected range of the original traffic features.
noticeable to a human observer investigating an attack, or the features
may no longer satisfy the intended attack behavior.

Fig. 5 shows the distribution of original and adversarial examples
where 𝜃 = 0.05 and 𝛾 = 0.02. Importantly here, the difference between
the adversarial and original distributions is unnoticeable, meaning that
such adversarial attacks would be unlikely to be identified through
statistical methods, and may well exhibit sufficient similarity to the
underlying attack sequence in the packet flow communication. We
can therefore consider this specific set of adversarial examples to be
functionality-preserving.

Fig. 6 shows the confusion matrix of targeted JSMA on both (a) the
target model and (b) the surrogate model, where 𝜃 = 0.05 and 𝛾 = 0.02,
as determined to be a suitable set of parameters for functionality-
preservation. Whilst a clear diagonal can be observed on each matrix,
this is still severely degraded from the original result shown in Fig. 1,
whilst also noting that functionality of the adversarial cases would
likely be preserved. Such parameter constraints would mean that not
all adversarial examples will achieve misclassification, and some classes
may well be more robust against the generation of adversarial exam-
ple. Table 3 provides a detailed summary of the results, showing the
number of successful targeted attacks for the constrained adversarial
7

examples, for each of the possible attack classes. Overall, we observe
that 90.25% of the attacks were able to evade detection, with all
DoS slowhttptest, and Heartbleed being misclassified, as well as the
majority of other DoS attacks and Web Attack SQL Injection. Excluding
the benign class that we did not try to perturb, all classes were found
to exhibit some degree of vulnerability, as demonstrated by successful
attacks.

3.5. Summary of the adversarial attack stage

We provide a comprehensive study on adversarial attack generation
against a well-trained machine learning model for network traffic
classification. We show that whilst evasion attacks are significantly
more challenging to conduct within the constraints of the original data
distribution, attacks of this nature are still achievable. As illustrated in
Table 3, the fact that at least one instance of each attack can evade the
classification model highlights the potential vulnerabilities exhibited by
such a learning system. We affirm the often stated maxim that whilst
defenders need to be successful in detection every time, attackers only
need to be successful in their attack once in order to achieve their goal.

Journal of Information Security and Applications 72 (2023) 103398A. McCarthy et al.
Fig. 5. Parallel Coordinates to show the distribution of original features versus JSMA features (𝜃 = 0.05 and 𝛾 = 0.02). The perturbed JSMA features are within the expected range
of the original traffic features.
Fig. 6. Targeted JSMA for benign class (𝜃 = 0.05 and 𝛾 = 0.02) against (a) Target model (Scikit-learn), (b) Surrogate model (Keras).
For this study, we have concentrated on the use of JSMA since it can
provide targeted and untargeted attacks, and because the parameters
allow control of the number of features to perturb and the amount
of perturbation to introduce. Recent work has explored alternative
adversarial techniques including Fast Gradient Sign Method (FGSM),
Basic Iterative Method (BIM), and Projected Gradient Descent (PGD)
that can also be configured to modify fewer or specific features [26]. Li-
braries such as the Adversarial Robustness Toolkit also support masking
parameters to modify select features [17].

It is important to note that ML-based Intrusion Detection Systems
may well include a mixture of categorical, continuous, and discrete
features [49]. JSMA uses random perturbations of continuous features
to generate adversarial examples. Features such as destination port
number and protocol are nominal attributes that should not be treated
as numerical and should not be perturbed in this same way. For the
variant of the CICIDS2017 dataset used in this study, we use the packet
flow data, which consists primarily of count data and statistical-based
features derived from count data, and only perform perturbation of
the continuous features. Nevertheless, additional logical and mathe-
matical constraints should also be considered in future studies such
that statistical features are accurate. Consequently, the crafting of
8

adversarial examples within constrained domains poses unique chal-
lenges compared to much of the prior work from the computer vision
domain [14].

4. Hierarchical classification for model robustness

Having successfully compromised the network traffic classification
model, we now explore the defensive strategies to improve the robust-
ness of the classifier against such adversarial attacks. Previous works
have often retrained the classifier using a set of curated adversarial
examples [35,50,51]; however, this approach is not scalable and only
provides a retrospective defense after a compromise has been identi-
fied. Instead, we restructure the attack surface where misclassification
can occur by using a hierarchical classification layer. By reframing
the classification task such that we provide a hierarchical label, we
effectively reduce the attack surface available to the adversarial meth-
ods, such that the amount of perturbation required to misclassify a
label becomes greater than compared to a flat classification layer, and
outside of the distribution of the original dataset. For our network
traffic classification case study, this means we can reduce the number of
possible output states from 25 to approximately 2–5 states at any level

Journal of Information Security and Applications 72 (2023) 103398A. McCarthy et al.
Table 3
Percentage of successful attacks, target = ‘benign’, by class (𝜃 = 0.05 & 𝛾 = 0.02).
Traffic type Original Correct after JSMA Successful attack percentage

FTP-Patator 82 0 100.00
Web Attack - Sql Injection 76 0 100.00
Heartbleed 91 0 100.00
DoS GoldenEye 72 0 100.00
DoS Hulk - Attempted 91 0 100.00
DoS Hulk 85 0 100.00
DoS Slowhttptest - Attempted 75 0 100.00
DoS Slowhttptest 100 0 100.00
DoS slowloris - Attempted 93 0 100.00
DoS slowloris 90 0 100.00
SSH-Patator 89 0 100.00
DoS GoldenEye - Attempted 91 0 100.00
Web Attack - XSS 90 0 100.00
Infiltration - Attempted 90 0 100.00
Web Attack - Brute Force - Attempted 82 0 100.00
Web Attack - Brute Force 97 0 100.00
PortScan 94 0 100.00
Bot 82 0 100.00
Infiltration 101 1 99.01
Bot - Attempted 103 4 96.12
DDoS 97 6 93.81
SSH-Patator - Attempted 91 26 71.43
Web Attack - XSS - Attempted 86 70 18.60
FTP-Patator - Attempted 100 94 6.00

Total 2063 201 90.25
of the hierarchy. We propose that a hierarchical classification approach
is less susceptible to the influence of adversarial examples compared
to the classifier used previously in this work. For our experimentation,
we incorporate the hierarchical learning library, HiClass [52], with our
previous implementation in Section 3.

4.1. Hierarchical classification

Traditional classification models utilize a flat output layer where
each class is associated with a probability. However, many large classi-
fication tasks will exhibit some natural hierarchy. For example, within
the CICIDS2017 we can observe that there are multiple variants of de-
nial of service attacks (DoS), as well as different web-based attacks, and
patator attacks on FTP and SSH services. The grouping of similar classes
may therefore mean that misclassification between classes that exist in
separate groupings may become more challenging for an adversarial
attack to achieve.

Koller and Sahami’s [53] seminal work on local classification ap-
proach established the foundations for researchers to expand the field
of hierarchical classification using local classifiers. Hierarchical models
often employ multiple multi-class models (e.g. One-Vs-All/One-Vs-Rest)
and therefore may be considerably larger than flat models. There are
three generally accepted forms of local classifier: Local Classifier Per
Node (LCPN), Local Classifier Per Parent Node (LCPPN), and Local
Classifier Per Level (LCPL).

• Local Classifier Per Node (LCPN): A binary classifier is trained
for every node in the class hierarchy (excluding the root node).
The advantage is that this becomes naturally multi-class. The
disadvantage is that because each node is trained independently,
it is theoretically possible to have inconsistency between lev-
els (e.g., a coarse class prediction of ‘DoS’ = False and a finer
prediction of ‘DoS Hulk’ = True). Without methods to resolve
these class-membership inconsistencies, incompatible predictions
between coarse and fine classes are possible.

• Local Classifier Per Parent Node (LCPPN): A multi-class classi-
fier is trained for each parent’s child nodes. This method respects
hierarchy constraints while avoiding class-membership inconsis-
tencies.
9

• Local Classifier Per Level (LCPL): A multi-class classifier is
trained for each level of the hierarchy. Simplistic implementations
take the output of the classifier at each level, presenting this as the
final classification. This method can result in class-membership
inconsistencies. Approaches avoiding class-membership inconsis-
tencies include a top-down approach where the class prediction
at coarse levels restricts classification at finer levels to only child
nodes of the previous level.

4.2. Hierarchical output class

Typically, a machine learning classifier is trained to provide a single
label from a set of possible labels. This approach extends from object
classification through to natural language generation, and in our case
study so far, predicting a label that defines the associated network
attack type, based on the characteristics of the input network traffic.
We naturally think about how these output classes may group together,
such that similar attack types are grouped together, and then assigned a
specific sub-group. For example, DoS slowloris, DoS Slowhttptest, DoS
Hulk, and DoS GoldenEye, can naturally group together as a DoS group.
Similarly, we can group together all web attacks. How we define a suit-
able set of hierarchical class labels could be achieved in multiple ways:
either based on analyst’s domain knowledge, text label similarities,
feature similarities, or some higher attributes related to the data. For
the purpose of this study, we did not explore hyper-parameter searching
as this was not the core focus of this study; however, this remains
an area of future research. We perform our experimentation using
7 different hierarchical schemes: K-Means; Ward; Average; Complete;
Single; Researcher Defined; and Dataset.

Fig. 7 shows two of the initial hierarchy schemes: Dataset and
Researcher Defined. The dataset scheme (a) is based on the implicit
hierarchy that is present in the original dataset by how attacks have
been grouped by the original authors. The researcher scheme (b) is
defined by ourselves based on our domain knowledge.

4.2.1. Automated hierarchical clustering - k-Means
We optimistically expect hierarchies, defined by human experts, to

be most robust; however, building such a hierarchy is a skilled task and
introduces an overhead for analysts. To assist the process of generating

class hierarchies, we consider automated cluster techniques.

Journal of Information Security and Applications 72 (2023) 103398A. McCarthy et al.
Fig. 7. Hierarchies assembled by human reasoning: (a) original data set structure, (b) researcher-defined structure. Attempted classes are denoted by ∗.
Fig. 8. Hierarchy based on divisive clustering: KMeans.

Firstly, we use 𝑘-means clustering to identify the hierarchical rela-
tionships, where 𝑘 specifies the number of suitable clusters to discover.
Fig. 8 shows the hierarchy as determined by 𝑘-means clustering using
a top-down approach. In this example, 𝑘 = 5, for which we can see the
majority of classes cluster in group 0.

4.2.2. Automated hierarchical clustering - agglomerative
Agglomerative clustering is a type of hierarchical clustering that

differs from k-means in that it is a bottom-up approach. It begins with
𝑛 clusters and sequentially combines similar clusters until all clusters
belong to a single large cluster. The approach is more computationally
expensive than 𝑘-means, however the scheme is especially applicable
for arranging clusters into a natural hierarchy. The main parameters of
agglomerative clustering are affinity and linkage, where affinity refers
to the distance metrics used (euclidean distance), and linkage refers
to how the distance between clusters should be measured. We study
four possible linkage schemes: ‘Ward’ [54], ‘Average’, ‘Complete’, and
‘Single’ (see Fig. 9). For a given pair of clusters, ‘Single’ will calculate
the minimum distance between any pair of observations within each
of the clusters, whilst ‘Complete’ will calculate the maximum distance
between a pair of observations. ‘Average’ will take an average distance
based on all pairs of observations within each clusters. ‘Ward’ is similar
to average; however, it utilizes the variance of the observations within
each cluster to then calculate the average. The scikit-learn library
provides a function for Agglomerative Clustering that supports all four
linkage schemes.

Algorithm 1 and Algorithm 2 show the process of constructing
hierarchies for either an unlabeled or labeled dataset respectively, by
generating labels for both coarse and fine layers. The analyst can
provide an integer to define the number of expected coarse and fine
classes for the hierarchy, or if not provided, this will default to five.
10
Algorithm 1: Create hierarchical labels from an unlabeled flat
dataset.

finecluster = AgglomerativeClustering(n_clusters=15, affinity=affinity,
linkage=linkage);

finecluster.fit_predict(X);
coarsecluster = AgglomerativeClustering(n_clusters=5, affinity=affinity,

linkage=linkage);
coarsecluster.fit_predict(X);
top_layer_labels = coarsecluster.labels_
bottom_layer_labels = finecluster.labels_
for i in range len(X):

hier_labels.append([str(top_layer_labels[i]),str(bottom_layer_labels[i])])

Algorithm 2: Create hierarchical labels from a labeled flat
dataset.

cluster = ClusterAlgorithm(n_clusters= 5)
cluster.fit_predict(X)
for class in range (0,max_class):

initialize class groups
for i in range len(X):

append cluster_label to relevant ground-truth class
for class_name in all_classes:

find majority cluster label for ground-truth label
Initialize hier_labels = empty
for i in range(len(X)):

append [str(majority_cluster_label),str(ground_truth_label[i])] to hier_labels

4.3. Deployment of hierarchical classification

With the set of possible class hierarchies available, we can build a
two-layer hierarchical classifier using the Python library ‘HiClass’ [52],
for which we can then test each hierarchical structure for the model
output layer. This library integrates with the scikit-learn MLP classifier,
and so we can easily incorporate our previous target model from
Section 3. This also enables us to compare the results of the hierarchical
approach with that of the original flat model used previously. For
hierarchical learning models we can evaluate the model performance
using modified performance metrics proposed by Kritchenko et al. [55]:
hierarchical precision (hP), hierarchical Recall (hR) and hierarchical
F1-Score (hF).

4.4. Results of hierarchical classification

Fig. 10 shows the F1-Score Macro Average for the original flat MLP
model with both the normal data and the compromised adversarial
example data. Similarly, it also shows the Hierarchical F1-Scores (HF)
for both the coarse and fine layers of the hierarchical model, for both
the normal data and the compromised adversarial example data. We
show this for each of the seven clustering strategies. It can be seen
that LCPPN hierarchical classifiers can improve the robustness of clas-
sification, as measured by F1-Score. In particular, We note an average
improvement of 84.85% in classification of presented adversarial ex-

amples:an increase of 0.28 from 0.33 to 0.61 This improvement can be

Journal of Information Security and Applications 72 (2023) 103398A. McCarthy et al.
Fig. 9. Hierarchies from agglomerative clustering: (a) Ward, (b) Average, (c) Complete, and (d) Single. Attempted classes are denoted by ∗.
Fig. 10. Bar plot to show robustness improvement by comparing appropriate F1-Score metrics across different LCPPN hierarchies. It can be seen that all hierarchies have improved
F1-Scores under adversarial conditions. We highlight two important results: the orange horizontal line indicates the mean F1-Score for ‘Flat MLP JSMA’ across the hierarchies. The
brown horizontal line indicates the mean ‘Hierarchy Layer 2 JSMA’ across the hierarchies. All hierarchies also improve the F1-Score when no adversarial traffic is present. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
seen in the difference between the orange and brown horizontal lines.
Moreover, we note a slight improvement in robustness of classification
in general when only original unperturbed samples are presented.

Our hierarchical defense achieves good robustness regardless of
the presence of adversarial learning attack. We note that all of the
hierarchies improved robustness as measured by the F1-Score under ad-
versarial conditions. Moreover, the hierarchical approach also improves
the F1-Score when no adversarial traffic is present. Fig. 11 shows the
confusion matrix for both (a) the coarse layer and (b) the fine layer,
that reveals fewer misclassifications compared to the original model
performance. We agree with Qian et al. [38]: classifiers with fewer
output classes are more robust. However, Hierarchical F1-Score for the
11
‘single’ (Fig. 9) remains steady. We believe that because this hierarchy
has a particularly large subclass, that the benefit of a hierarchical
structure is not fully realized, suggesting that some hierarchies will be
more robust than others. Furthermore, we find that flat models that are
most susceptible to adversarial samples gain most from implementing
a hierarchy.

5. Discussion

In this section, we discuss topics proceeding from this work, in-
cluding: how hierarchical learning can help improve robustness and
assist in blocking the transferability of adversarial examples. We inspect

Journal of Information Security and Applications 72 (2023) 103398A. McCarthy et al.
Fig. 11. Confusion matrices for (a) coarse layer and (b) fine layer that shows fewer misclassifications for the original dataset when utilizing a hierarchical classification model.
the classifiers and clustering techniques used in hierarchical learning,
and subsequently discuss how a hierarchical classifier might be ro-
bustness benefits of hierarchical classifiers and hierarchies, clustering
techniques, blocking transferability, and subsequently discuss how we
might feasibly attack a hierarchical classifier.

5.1. Benefits of hierarchical classifiers

Hierarchical classification is a simple ensemble technique that of-
fers promise in protecting machine learning systems from adversarial
examples as we explored for intrusion detection systems.

We posit that for hierarchical models with a few parent nodes and
more child nodes, the higher layers are more robust than the lower
layers. This offers advantages for network defense because misclassi-
fication among subclasses (e.g. DoS Hulk and DoS slowhttp) is a less
serious prospect than misclassification among superclasses (e.g. DoS
and Benign) [56]. Indeed, Jeanneret et al. [57] note that hierarchical
attacks aiming for severe outcomes are less successful in evading detec-
tion. Hierarchical classifiers offer improvements in F1-Score. Moreover,
they may also reduce memory consumption, disk usage, and training
time [52].

5.2. Hierarchies

Simple classifiers with fewer output classes are more robust [38]. It
follows that in hierarchical models with a few parent nodes and more
child nodes, the higher layers are more robust than the lower layers;
however, if the classification task is truly hierarchical, by the nature
of the class and subclasses, Layer 1 and Layer 2 will intuitively have
aligned gradients. For example, the classifier for the parent node ‘Denial
of Service’ will likely have gradients aligned with classifiers detecting
specific subclasses of Denial of Service attacks such as ‘DoS Hulk’. In-
tuitively, the construction of a traditional hierarchical classifier means
that Layer 1 and Layer 2 ought to have aligned gradients. Using
strong ensemble classifiers with misaligned gradients in a hierarchy
may help improve robustness for hierarchical classifiers, combining the
advantages of misaligned gradients and the robustness improvement
gained through hierarchical classification.

Top-down methods restrict classification at finer levels to only child
nodes of the previous level, meaning that lower levels also have fewer
classes, further increasing robustness. We recognize a disadvantage
that when descending a hierarchy there is no way to retrace one’s
12
steps. Therefore, misclassification at a coarse level might forbid correct
classification at the fine level; however, improved robustness may be
considered sufficient for this trade-off.

5.2.1. Clustering techniques
Divisive and agglomerative clustering techniques could be em-

ployed to find other groupings of classes. Hierarchical labels simplify
the generation of hierarchical classifiers. Our semi-automated tech-
niques could be used to build hierarchical labels for unlabeled or
labeled flat datasets.

We note that any clustering algorithm is unlikely to generate clus-
ters that correspond exactly to the known classes. Indeed, in our
experiments we found that a particular known class could be dispersed
among multiple clusters. Our objective is to explore the generation
of hierarchies rather than to label datasets. Clustering techniques are
unlikely to perform as well as supervised or semi-supervised learning
techniques [58]. Instead, we use clustering only as a guide to which
ground-truth labels could be grouped.

We note that for hierarchies with diverse fine-classes covered by one
large coarse-class. For example, Single has a particularly large coarse-
class. The prospect of misclassification at the coarse level is likely
proportionate to the number of classes in that branch of the Hierarchy.

5.3. Blocking transferability

The transferability property of adversarial examples can effectively
be used to perform gray-box or black-box attacks. Breaking transferabil-
ity is an important goal. In our experiments we observe a reduction in
transferability to our hierarchical model. Other work considers other
ways to block the transferability of adversarial examples. For exam-
ple, Hosseini et al. propose NULL-labeling as a form of adversarial
training [59].

5.4. Effectively attacking hierarchies

Our hierarchical defense improves robustness against adversarial
learning attacks. Attacks causing misclassification between subclasses
are less severe than attacks causing misclassification at class level.
Successful adversarial learning attacks on intrusion detection systems
must preserve the functionality of malicious network traffic. Research
in other domains might apply in cyber security. For example, Jeanneret
et al. [57] consider hierarchy aware attacks that generate adversarial

Journal of Information Security and Applications 72 (2023) 103398A. McCarthy et al.
perturbations considering the hierarchical distance between labels.
Moreover, they consider the severity of Hierarchical Attacks and apply
Curriculum Learning to enhance the performance of models through
learning concepts from coarse to fine.

6. Conclusions and future work

In this paper, we propose hierarchical learning as a defensive strat-
egy to mitigate against adversarial machine learning attacks. Our de-
fense is independent of the attack algorithm and based on a robust
hierarchical learning scheme. When under attack, our defense achieves
accuracy scores close to the accuracy of the original flat model with no
adversarial machine learning attacks. Our approach is intended to be
representative of a functionality-preserving black-box attack; however,
our approach may be considered a gray-box attack, because inevitably
we have some knowledge of our underlying models.

Our results reveal that hierarchies can help models perform better
under adversarial conditions than their equivalent flat model. More-
over, hierarchies can also improve the F1-Score when no adversary
perturbed traffic is present. Our work compares the performance of
seven hierarchies constructed via different methods: Dataset file struc-
ture, Human researcher (expert) defined structure, Divisive Clustering
(K-Means), Agglomerative Clustering using the euclidean distance and
different linkages (Ward, Average, Complete, Single). We find each of
these hierarchies performs better than the original flat model in the
presence of adversary perturbed traffic.

Future experiments could include more samples in training and
test data. We believe our study to be representative; however, some
elements of our results are contingent on random hybrid sampling and
the effectiveness of the clustering algorithms. We note that in some
cases, only a few samples are present to determine the coarse-level
classification, and so additional testing with a larger yet well-balanced
data corpus would be beneficial.

Data availability

To aid in replication of our results and further research, we pro-
vide the source in our repository: https://github.com/mccarthyajb/HL-
NTAC.

Funding

This work was supported by the University of the West of England,
UK Partnership PhD scheme in collaboration with Techmodal Ltd.

References

[1] Ell M, Gallucci R. Cyber security breaches survey 2022: Statistical release. 2022.
[2] Biggio B, Roli F. Wild patterns: Ten years after the rise of adversarial machine

learning. Pattern Recognit 2018;84:317–31.
[3] McCarthy A, Ghadafi E, Andriotis P, Legg P. Functionality-preserving adversarial

machine learning for robust classification in cybersecurity and intrusion detection
domains: A survey. J Cybersecur Priv 2022;2(1):154–90.

[4] McCarthy A, Andriotis P, Ghadafi E, Legg P. Feature vulnerability and ro-
bustness assessment against adversarial machine learning attacks. In: 2021
international conference on cyber situational awareness, data analytics and
assessment (CyberSA). IEEE; 2021, p. 1–8.

[5] Szegedy C, Zaremba W, Sutskever I, Bruna J, Erhan D, Goodfellow I, Fergus R.
Intriguing properties of neural networks. In: International conference on learning
representations, ICLR 2014. 2014, 2nd International Conference on Learning
Representations, ICLR 2014 ; Conference date: 14-04-2014 Through 16-04-2014.

[6] Papernot N, McDaniel P, Sinha A, Wellman MP. Sok: Security and privacy in
machine learning. In: 2018 IEEE European symposium on security and privacy
(EuroS&P). IEEE; 2018, p. 399–414.

[7] Zhang J, Li C. Adversarial examples: Opportunities and challenges. IEEE Trans
Neural Netw Learn Syst 2019.
13
[8] Apruzzese G, Andreolini M, Ferretti L, Marchetti M, Colajanni M. Modeling
realistic adversarial attacks against network intrusion detection systems. Digit
Threats: Res Pract 2021.

[9] Qureshi AUH, Larijani H, Yousefi M, Adeel A, Mtetwa N. An adversarial approach
for intrusion detection systems using Jacobian saliency map attacks (JSMA)
algorithm. Computers 2020;9(3):58.

[10] Lin Z, Shi Y, Xue Z. Idsgan: Generative adversarial networks for attack generation
against intrusion detection. In: Pacific-Asia conference on knowledge discovery
and data mining. Springer; 2022, p. 79–91.

[11] Papernot N, McDaniel P, Goodfellow I. Transferability in machine learning: from
phenomena to black-box attacks using adversarial samples. 2016, arXiv preprint
arXiv:1605.07277.

[12] Yang D, Xiao Z, Yu W. Boosting the adversarial transferability of surrogate model
with dark knowledge. 2022, arXiv preprint arXiv:2206.08316.

[13] Zhang J, Chen C, Xiang Y, Zhou W, Xiang Y. Internet traffic classification by
aggregating correlated naive bayes predictions. IEEE Trans Inf Forensics Secur
2012;8(1):5–15.

[14] Sheatsley R, Hoak B, Pauley E, Beugin Y, Weisman MJ, McDaniel P. On the
robustness of domain constraints. In: Proceedings of the 2021 ACM SIGSAC
conference on computer and communications security. 2021, p. 495–515.

[15] Apruzzese G, Laskov P, de Oca EM, Mallouli W, Rapa LB, Grammatopoulos AV,
Franco FD. The role of machine learning in cybersecurity. Digit Threats: Res
Pract 2022.

[16] Grosse K, Manoharan P, Papernot N, Backes M, McDaniel P. On the (statistical)
detection of adversarial examples. 2017, arXiv preprint arXiv:1702.06280.

[17] Nicolae M-I, Sinn M, Tran MN, Buesser B, Rawat A, Wistuba M, Zantedeschi V,
Baracaldo N, Chen B, Ludwig H, Molloy I, Edwards B. Adversarial robustness
toolbox v1.2.0. 2018, CoRR 1807.01069. URL https://arxiv.org/pdf/1807.01069.

[18] Wu Y, Wei D, Feng J. Network attacks detection methods based on deep learning
techniques: a survey. Secur Commun Netw 2020;2020.

[19] Tavallaee M, Bagheri E, Lu W, Ghorbani AA. A detailed analysis of the KDD CUP
99 data set. In: 2009 IEEE symposium on computational intelligence for security
and defense applications. IEEE; 2009, p. 1–6.

[20] McHugh J. Testing intrusion detection systems: a critique of the 1998 and 1999
darpa intrusion detection system evaluations as performed by lincoln laboratory.
ACM Trans Inf Syst Secur 2000;3(4):262–94.

[21] Cerf VG. 2021 Internet perspectives. IEEE Network 2021;35(1):3.
[22] McKeay M. Akamai state of the internet / security: A year in review. 2020,

http://akamai.com/soti.
[23] SimilarWeb R. Top websites ranking. 2022, https://www.similarweb.com/top-

websites/.
[24] Kok S, Abdullah A, Jhanjhi N, Supramaniam M. A review of intrusion detection

system using machine learning approach. Int J Eng Res Technol 2019;12(1):8–15.
[25] Martins N, Cruz JM, Cruz T, Abreu PH. Adversarial machine learning ap-

plied to intrusion and malware scenarios: a systematic review. IEEE Access
2020;8:35403–19.

[26] Gómez ÁLP, Maimó LF, Celdrán AH, Clemente FJG, Cleary F. Crafting adversarial
samples for anomaly detectors in industrial control systems. Procedia Comput Sci
2021;184:573–80.

[27] Gonzalez-Cuautle D, Hernandez-Suarez A, Sanchez-Perez G, Toscano-Medina LK,
Portillo-Portillo J, Olivares-Mercado J, Perez-Meana HM, Sandoval-Orozco AL.
Synthetic minority oversampling technique for optimizing classification tasks in
botnet and intrusion-detection-system datasets. Appl Sci 2020;10(3):794.

[28] Johnson JM, Khoshgoftaar TM. Survey on deep learning with class imbalance. J
Big Data 2019;6(1):1–54.

[29] Sheatsley R, Papernot N, Weisman M, Verma G, McDaniel P. Adversarial
examples in constrained domains. 2020, arXiv preprint arXiv:2011.01183.

[30] Bai T, Luo J, Zhao J, Wen B. Recent advances in adversarial training for
adversarial robustness. 2021, arXiv e-prints arXiv–2102.

[31] Amer M, Maul T. Weight map layer for noise and adversarial attack robustness.
2019, arXiv preprint arXiv:1905.00568.

[32] Lillicrap TP, Cownden D, Tweed DB, Akerman CJ. Random synaptic feedback
weights support error backpropagation for deep learning. Nature Commun
2016;7(1):1–10.

[33] Metzen JH, Genewein T, Fischer V, Bischoff B. On detecting adversarial
perturbations. 2017, arXiv preprint arXiv:1702.04267.

[34] Carlini N, Wagner D. Adversarial examples are not easily detected: Bypassing
ten detection methods. In: Proceedings of the 10th ACM workshop on artificial
intelligence and security. 2017, p. 3–14.

[35] Tramèr F, Kurakin A, Papernot N, Goodfellow I, Boneh D, McDaniel P. Ensemble
adversarial training: Attacks and defenses. In: 6th international conference on
learning representations, ICLR 2018. 2018.

[36] Wang S, Wang X, Zhao P, Wen W, Kaeli D, Chin P, Lin X. Defensive dropout
for hardening deep neural networks under adversarial attacks. In: Proceedings
of the international conference on computer-aided design. 2018, p. 1–8.

[37] Resende PAA, Drummond AC. A survey of random forest based methods for
intrusion detection systems. ACM Comput Surv 2018;51(3):1–36.

[38] Qian S, Kalimeris D, Kaplun G, Singer Y. Robustness from simple classifiers.
2020, arXiv preprint arXiv:2002.09422.

[39] Chollet F, et al. Keras. 2015, https://github.com/fchollet/keras.

https://github.com/mccarthyajb/HL-NTAC
https://github.com/mccarthyajb/HL-NTAC
https://github.com/mccarthyajb/HL-NTAC
http://refhub.elsevier.com/S2214-2126(22)00242-3/sb1
http://refhub.elsevier.com/S2214-2126(22)00242-3/sb2
http://refhub.elsevier.com/S2214-2126(22)00242-3/sb2
http://refhub.elsevier.com/S2214-2126(22)00242-3/sb2
http://refhub.elsevier.com/S2214-2126(22)00242-3/sb3
http://refhub.elsevier.com/S2214-2126(22)00242-3/sb3
http://refhub.elsevier.com/S2214-2126(22)00242-3/sb3
http://refhub.elsevier.com/S2214-2126(22)00242-3/sb3
http://refhub.elsevier.com/S2214-2126(22)00242-3/sb3
http://refhub.elsevier.com/S2214-2126(22)00242-3/sb4
http://refhub.elsevier.com/S2214-2126(22)00242-3/sb4
http://refhub.elsevier.com/S2214-2126(22)00242-3/sb4
http://refhub.elsevier.com/S2214-2126(22)00242-3/sb4
http://refhub.elsevier.com/S2214-2126(22)00242-3/sb4
http://refhub.elsevier.com/S2214-2126(22)00242-3/sb4
http://refhub.elsevier.com/S2214-2126(22)00242-3/sb4
http://refhub.elsevier.com/S2214-2126(22)00242-3/sb5
http://refhub.elsevier.com/S2214-2126(22)00242-3/sb5
http://refhub.elsevier.com/S2214-2126(22)00242-3/sb5
http://refhub.elsevier.com/S2214-2126(22)00242-3/sb5
http://refhub.elsevier.com/S2214-2126(22)00242-3/sb5
http://refhub.elsevier.com/S2214-2126(22)00242-3/sb5
http://refhub.elsevier.com/S2214-2126(22)00242-3/sb5
http://refhub.elsevier.com/S2214-2126(22)00242-3/sb6
http://refhub.elsevier.com/S2214-2126(22)00242-3/sb6
http://refhub.elsevier.com/S2214-2126(22)00242-3/sb6
http://refhub.elsevier.com/S2214-2126(22)00242-3/sb6
http://refhub.elsevier.com/S2214-2126(22)00242-3/sb6
http://refhub.elsevier.com/S2214-2126(22)00242-3/sb7
http://refhub.elsevier.com/S2214-2126(22)00242-3/sb7
http://refhub.elsevier.com/S2214-2126(22)00242-3/sb7
http://refhub.elsevier.com/S2214-2126(22)00242-3/sb8
http://refhub.elsevier.com/S2214-2126(22)00242-3/sb8
http://refhub.elsevier.com/S2214-2126(22)00242-3/sb8
http://refhub.elsevier.com/S2214-2126(22)00242-3/sb8
http://refhub.elsevier.com/S2214-2126(22)00242-3/sb8
http://refhub.elsevier.com/S2214-2126(22)00242-3/sb9
http://refhub.elsevier.com/S2214-2126(22)00242-3/sb9
http://refhub.elsevier.com/S2214-2126(22)00242-3/sb9
http://refhub.elsevier.com/S2214-2126(22)00242-3/sb9
http://refhub.elsevier.com/S2214-2126(22)00242-3/sb9
http://refhub.elsevier.com/S2214-2126(22)00242-3/sb10
http://refhub.elsevier.com/S2214-2126(22)00242-3/sb10
http://refhub.elsevier.com/S2214-2126(22)00242-3/sb10
http://refhub.elsevier.com/S2214-2126(22)00242-3/sb10
http://refhub.elsevier.com/S2214-2126(22)00242-3/sb10
http://arxiv.org/abs/1605.07277
http://arxiv.org/abs/2206.08316
http://refhub.elsevier.com/S2214-2126(22)00242-3/sb13
http://refhub.elsevier.com/S2214-2126(22)00242-3/sb13
http://refhub.elsevier.com/S2214-2126(22)00242-3/sb13
http://refhub.elsevier.com/S2214-2126(22)00242-3/sb13
http://refhub.elsevier.com/S2214-2126(22)00242-3/sb13
http://refhub.elsevier.com/S2214-2126(22)00242-3/sb14
http://refhub.elsevier.com/S2214-2126(22)00242-3/sb14
http://refhub.elsevier.com/S2214-2126(22)00242-3/sb14
http://refhub.elsevier.com/S2214-2126(22)00242-3/sb14
http://refhub.elsevier.com/S2214-2126(22)00242-3/sb14
http://refhub.elsevier.com/S2214-2126(22)00242-3/sb15
http://refhub.elsevier.com/S2214-2126(22)00242-3/sb15
http://refhub.elsevier.com/S2214-2126(22)00242-3/sb15
http://refhub.elsevier.com/S2214-2126(22)00242-3/sb15
http://refhub.elsevier.com/S2214-2126(22)00242-3/sb15
http://arxiv.org/abs/1702.06280
https://arxiv.org/pdf/1807.01069
http://refhub.elsevier.com/S2214-2126(22)00242-3/sb18
http://refhub.elsevier.com/S2214-2126(22)00242-3/sb18
http://refhub.elsevier.com/S2214-2126(22)00242-3/sb18
http://refhub.elsevier.com/S2214-2126(22)00242-3/sb19
http://refhub.elsevier.com/S2214-2126(22)00242-3/sb19
http://refhub.elsevier.com/S2214-2126(22)00242-3/sb19
http://refhub.elsevier.com/S2214-2126(22)00242-3/sb19
http://refhub.elsevier.com/S2214-2126(22)00242-3/sb19
http://refhub.elsevier.com/S2214-2126(22)00242-3/sb20
http://refhub.elsevier.com/S2214-2126(22)00242-3/sb20
http://refhub.elsevier.com/S2214-2126(22)00242-3/sb20
http://refhub.elsevier.com/S2214-2126(22)00242-3/sb20
http://refhub.elsevier.com/S2214-2126(22)00242-3/sb20
http://refhub.elsevier.com/S2214-2126(22)00242-3/sb21
http://akamai.com/soti
https://www.similarweb.com/top-websites/
https://www.similarweb.com/top-websites/
https://www.similarweb.com/top-websites/
http://refhub.elsevier.com/S2214-2126(22)00242-3/sb24
http://refhub.elsevier.com/S2214-2126(22)00242-3/sb24
http://refhub.elsevier.com/S2214-2126(22)00242-3/sb24
http://refhub.elsevier.com/S2214-2126(22)00242-3/sb25
http://refhub.elsevier.com/S2214-2126(22)00242-3/sb25
http://refhub.elsevier.com/S2214-2126(22)00242-3/sb25
http://refhub.elsevier.com/S2214-2126(22)00242-3/sb25
http://refhub.elsevier.com/S2214-2126(22)00242-3/sb25
http://refhub.elsevier.com/S2214-2126(22)00242-3/sb26
http://refhub.elsevier.com/S2214-2126(22)00242-3/sb26
http://refhub.elsevier.com/S2214-2126(22)00242-3/sb26
http://refhub.elsevier.com/S2214-2126(22)00242-3/sb26
http://refhub.elsevier.com/S2214-2126(22)00242-3/sb26
http://refhub.elsevier.com/S2214-2126(22)00242-3/sb27
http://refhub.elsevier.com/S2214-2126(22)00242-3/sb27
http://refhub.elsevier.com/S2214-2126(22)00242-3/sb27
http://refhub.elsevier.com/S2214-2126(22)00242-3/sb27
http://refhub.elsevier.com/S2214-2126(22)00242-3/sb27
http://refhub.elsevier.com/S2214-2126(22)00242-3/sb27
http://refhub.elsevier.com/S2214-2126(22)00242-3/sb27
http://refhub.elsevier.com/S2214-2126(22)00242-3/sb28
http://refhub.elsevier.com/S2214-2126(22)00242-3/sb28
http://refhub.elsevier.com/S2214-2126(22)00242-3/sb28
http://arxiv.org/abs/2011.01183
http://refhub.elsevier.com/S2214-2126(22)00242-3/sb30
http://refhub.elsevier.com/S2214-2126(22)00242-3/sb30
http://refhub.elsevier.com/S2214-2126(22)00242-3/sb30
http://arxiv.org/abs/1905.00568
http://refhub.elsevier.com/S2214-2126(22)00242-3/sb32
http://refhub.elsevier.com/S2214-2126(22)00242-3/sb32
http://refhub.elsevier.com/S2214-2126(22)00242-3/sb32
http://refhub.elsevier.com/S2214-2126(22)00242-3/sb32
http://refhub.elsevier.com/S2214-2126(22)00242-3/sb32
http://arxiv.org/abs/1702.04267
http://refhub.elsevier.com/S2214-2126(22)00242-3/sb34
http://refhub.elsevier.com/S2214-2126(22)00242-3/sb34
http://refhub.elsevier.com/S2214-2126(22)00242-3/sb34
http://refhub.elsevier.com/S2214-2126(22)00242-3/sb34
http://refhub.elsevier.com/S2214-2126(22)00242-3/sb34
http://refhub.elsevier.com/S2214-2126(22)00242-3/sb35
http://refhub.elsevier.com/S2214-2126(22)00242-3/sb35
http://refhub.elsevier.com/S2214-2126(22)00242-3/sb35
http://refhub.elsevier.com/S2214-2126(22)00242-3/sb35
http://refhub.elsevier.com/S2214-2126(22)00242-3/sb35
http://refhub.elsevier.com/S2214-2126(22)00242-3/sb36
http://refhub.elsevier.com/S2214-2126(22)00242-3/sb36
http://refhub.elsevier.com/S2214-2126(22)00242-3/sb36
http://refhub.elsevier.com/S2214-2126(22)00242-3/sb36
http://refhub.elsevier.com/S2214-2126(22)00242-3/sb36
http://refhub.elsevier.com/S2214-2126(22)00242-3/sb37
http://refhub.elsevier.com/S2214-2126(22)00242-3/sb37
http://refhub.elsevier.com/S2214-2126(22)00242-3/sb37
http://arxiv.org/abs/2002.09422
https://github.com/fchollet/keras

Journal of Information Security and Applications 72 (2023) 103398A. McCarthy et al.
[40] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, Blondel M,
Prettenhofer P, Weiss R, Dubourg V, Vanderplas J, Passos A, Cournapeau D,
Brucher M, Perrot M, Duchesnay E. Scikit-learn: Machine learning in python. J
Mach Learn Res 2011;12:2825–30.

[41] Sharafaldin I, Lashkari AH, Ghorbani AA. Toward generating a new intrusion
detection dataset and intrusion traffic characterization. ICISSp 2018;1:108–16.

[42] Lashkari AH, Mamun MSI, Ghorbani AA, et al. Characterization of tor traffic
using time based features. 2017.

[43] Draper-Gil G, Lashkari AH, Mamun MSI, Ghorbani AA. Characterization of
encrypted and vpn traffic using time-related. 2016.

[44] Hofstede R, Drago I, Sperotto A, Pras A. Ethernet flow monitoring with IPFIX. In:
TERENA networking conference 2011. Trans-European Research and Education
Networking Association; 2011, p. 23, TERENA Networking Conference 2011 ;
Conference date: 16-05-2011 Through 19-05-2011.

[45] Engelen G, Rimmer V, Joosen W. Troubleshooting an intrusion detection dataset:
the CICIDS2017 case study. In: 2021 IEEE security and privacy workshops (SPW).
IEEE; 2021, p. 7–12.

[46] Pereira RM, Costa YM, Silla Jr. CN. Toward hierarchical classifica-
tion of imbalanced data using random resampling algorithms. Inform Sci
2021;578:344–63.

[47] Papernot N, McDaniel P, Goodfellow I, Jha S, Celik ZB, Swami A. Practical
black-box attacks against machine learning. In: Proceedings of the 2017 ACM
on Asia conference on computer and communications security. 2017, p. 506–19.

[48] Papernot N, McDaniel P, Jha S, Fredrikson M, Celik ZB, Swami A. The limitations
of deep learning in adversarial settings. In: 2016 IEEE European symposium on
security and privacy (EuroS&P). IEEE; 2016, p. 372–87.

[49] Sheatsley R, Papernot N, Weisman MJ, Verma G, McDaniel P. Adver-
sarial examples for network intrusion detection systems. J Comput Secur
2022;(Preprint):1–26.
14
[50] Madry A, Makelov A, Schmidt L, Tsipras D, Vladu A. Towards deep learning
models resistant to adversarial attacks. In: International conference on learning
representations. 2018, URL https://openreview.net/forum?id=rJzIBfZAb.

[51] Goodfellow IJ, Shlens J, Szegedy C. Explaining and harnessing adversarial
examples. 2014, arXiv preprint arXiv:1412.6572.

[52] Miranda FM, Köehnecke N, Renard BY. Hiclass: a python library for local
hierarchical classification compatible with scikit-learn. 2021, arXiv preprint
arXiv:2112.06560.

[53] Koller D, Sahami M. Hierarchically classifying documents using very few words.
In: Proceedings of the fourteenth international conference on machine learning.
1997, p. 170–8.

[54] Murtagh F, Legendre P. Ward’s hierarchical agglomerative clustering method:
which algorithms implement ward’s criterion? J Classification 2014;31(3):274–
95.

[55] Kiritchenko S, Matwin S, Nock R, Famili AF. Learning and evaluation in the
presence of class hierarchies: Application to text categorization. In: Conference
of the Canadian society for computational studies of intelligence. Springer; 2006,
p. 395–406.

[56] Ma A, Virmaux A, Scaman K, Lu J. Improving hierarchical adversarial robustness
of deep neural networks. 2021, arXiv preprint arXiv:2102.09012.

[57] Jeanneret G, Pérez JC, Arbelaez P. A hierarchical assessment of adversarial
severity. In: Proceedings of the IEEE/CVF international conference on computer
vision. 2021, p. 61–70.

[58] Min E, Long J, Liu Q, Cui J, Cai Z, Ma J. Su-ids: A semi-supervised and unsu-
pervised framework for network intrusion detection. In: International conference
on cloud computing and security. Springer; 2018, p. 322–34.

[59] Hosseini H, Chen Y, Kannan S, Zhang B, Poovendran R. Blocking transferability
of adversarial examples in black-box learning systems. 2017, arXiv preprint
arXiv:1703.04318.

http://refhub.elsevier.com/S2214-2126(22)00242-3/sb40
http://refhub.elsevier.com/S2214-2126(22)00242-3/sb40
http://refhub.elsevier.com/S2214-2126(22)00242-3/sb40
http://refhub.elsevier.com/S2214-2126(22)00242-3/sb40
http://refhub.elsevier.com/S2214-2126(22)00242-3/sb40
http://refhub.elsevier.com/S2214-2126(22)00242-3/sb40
http://refhub.elsevier.com/S2214-2126(22)00242-3/sb40
http://refhub.elsevier.com/S2214-2126(22)00242-3/sb41
http://refhub.elsevier.com/S2214-2126(22)00242-3/sb41
http://refhub.elsevier.com/S2214-2126(22)00242-3/sb41
http://refhub.elsevier.com/S2214-2126(22)00242-3/sb42
http://refhub.elsevier.com/S2214-2126(22)00242-3/sb42
http://refhub.elsevier.com/S2214-2126(22)00242-3/sb42
http://refhub.elsevier.com/S2214-2126(22)00242-3/sb43
http://refhub.elsevier.com/S2214-2126(22)00242-3/sb43
http://refhub.elsevier.com/S2214-2126(22)00242-3/sb43
http://refhub.elsevier.com/S2214-2126(22)00242-3/sb44
http://refhub.elsevier.com/S2214-2126(22)00242-3/sb44
http://refhub.elsevier.com/S2214-2126(22)00242-3/sb44
http://refhub.elsevier.com/S2214-2126(22)00242-3/sb44
http://refhub.elsevier.com/S2214-2126(22)00242-3/sb44
http://refhub.elsevier.com/S2214-2126(22)00242-3/sb44
http://refhub.elsevier.com/S2214-2126(22)00242-3/sb44
http://refhub.elsevier.com/S2214-2126(22)00242-3/sb45
http://refhub.elsevier.com/S2214-2126(22)00242-3/sb45
http://refhub.elsevier.com/S2214-2126(22)00242-3/sb45
http://refhub.elsevier.com/S2214-2126(22)00242-3/sb45
http://refhub.elsevier.com/S2214-2126(22)00242-3/sb45
http://refhub.elsevier.com/S2214-2126(22)00242-3/sb46
http://refhub.elsevier.com/S2214-2126(22)00242-3/sb46
http://refhub.elsevier.com/S2214-2126(22)00242-3/sb46
http://refhub.elsevier.com/S2214-2126(22)00242-3/sb46
http://refhub.elsevier.com/S2214-2126(22)00242-3/sb46
http://refhub.elsevier.com/S2214-2126(22)00242-3/sb47
http://refhub.elsevier.com/S2214-2126(22)00242-3/sb47
http://refhub.elsevier.com/S2214-2126(22)00242-3/sb47
http://refhub.elsevier.com/S2214-2126(22)00242-3/sb47
http://refhub.elsevier.com/S2214-2126(22)00242-3/sb47
http://refhub.elsevier.com/S2214-2126(22)00242-3/sb48
http://refhub.elsevier.com/S2214-2126(22)00242-3/sb48
http://refhub.elsevier.com/S2214-2126(22)00242-3/sb48
http://refhub.elsevier.com/S2214-2126(22)00242-3/sb48
http://refhub.elsevier.com/S2214-2126(22)00242-3/sb48
http://refhub.elsevier.com/S2214-2126(22)00242-3/sb49
http://refhub.elsevier.com/S2214-2126(22)00242-3/sb49
http://refhub.elsevier.com/S2214-2126(22)00242-3/sb49
http://refhub.elsevier.com/S2214-2126(22)00242-3/sb49
http://refhub.elsevier.com/S2214-2126(22)00242-3/sb49
https://openreview.net/forum?id=rJzIBfZAb
http://arxiv.org/abs/1412.6572
http://arxiv.org/abs/2112.06560
http://refhub.elsevier.com/S2214-2126(22)00242-3/sb53
http://refhub.elsevier.com/S2214-2126(22)00242-3/sb53
http://refhub.elsevier.com/S2214-2126(22)00242-3/sb53
http://refhub.elsevier.com/S2214-2126(22)00242-3/sb53
http://refhub.elsevier.com/S2214-2126(22)00242-3/sb53
http://refhub.elsevier.com/S2214-2126(22)00242-3/sb54
http://refhub.elsevier.com/S2214-2126(22)00242-3/sb54
http://refhub.elsevier.com/S2214-2126(22)00242-3/sb54
http://refhub.elsevier.com/S2214-2126(22)00242-3/sb54
http://refhub.elsevier.com/S2214-2126(22)00242-3/sb54
http://refhub.elsevier.com/S2214-2126(22)00242-3/sb55
http://refhub.elsevier.com/S2214-2126(22)00242-3/sb55
http://refhub.elsevier.com/S2214-2126(22)00242-3/sb55
http://refhub.elsevier.com/S2214-2126(22)00242-3/sb55
http://refhub.elsevier.com/S2214-2126(22)00242-3/sb55
http://refhub.elsevier.com/S2214-2126(22)00242-3/sb55
http://refhub.elsevier.com/S2214-2126(22)00242-3/sb55
http://arxiv.org/abs/2102.09012
http://refhub.elsevier.com/S2214-2126(22)00242-3/sb57
http://refhub.elsevier.com/S2214-2126(22)00242-3/sb57
http://refhub.elsevier.com/S2214-2126(22)00242-3/sb57
http://refhub.elsevier.com/S2214-2126(22)00242-3/sb57
http://refhub.elsevier.com/S2214-2126(22)00242-3/sb57
http://refhub.elsevier.com/S2214-2126(22)00242-3/sb58
http://refhub.elsevier.com/S2214-2126(22)00242-3/sb58
http://refhub.elsevier.com/S2214-2126(22)00242-3/sb58
http://refhub.elsevier.com/S2214-2126(22)00242-3/sb58
http://refhub.elsevier.com/S2214-2126(22)00242-3/sb58
http://arxiv.org/abs/1703.04318

	Defending against adversarial machine learning attacks using hierarchical learning: A case study on network traffic attack classification
	Introduction
	Related Work
	Adversarial Machine Learning
	Threat Model
	Functionality Preserving Adversarial Examples
	Intrusion Detection
	Model Training For Robust Models
	Robustness
	Common Defences
	Ensemble classification

	Adversarial Attack of a Network Traffic Classification Model
	Preparing the CICIDS 2017 Dataset
	Initial Classification Model
	Using the Surrogate Model to Attack the Target Model
	Functionality-Preservation of Adversarial Example Generation
	Summary of the Adversarial Attack Stage

	Hierarchical Classification for Model Robustness
	Hierarchical Classification
	Hierarchical Output Class
	Automated Hierarchical Clustering - k-Means
	Automated Hierarchical Clustering - Agglomerative

	Deployment of Hierarchical Classification
	Results of Hierarchical Classification

	Discussion
	Benefits of Hierarchical Classifiers
	Hierarchies
	Clustering Techniques

	Blocking Transferability
	Effectively Attacking Hierarchies

	Conclusions and Future Work
	Data availability
	References

