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Abstract—Whilst machine learning has been widely adopted
for various domains, it is important to consider how such
techniques may be susceptible to malicious users through adver-
sarial attacks. Given a trained classifier, a malicious attack may
attempt to craft a data observation whereby the data features
purposefully trigger the classifier to yield incorrect responses.
This has been observed in various image classification tasks,
including falsifying road sign detection and facial recognition,
which could have severe consequences in real-world deployment.
In this work, we investigate how these attacks could impact
on network traffic analysis, and how a system could perform
misclassification of common network attacks such as DDoS
attacks. Using the CICIDS2017 data, we examine how vulnerable
the data features used for intrusion detection are to perturbation
attacks using FGSM adversarial examples. As a result, our
method provides a defensive approach for assessing feature
robustness that seeks to balance between classification accuracy
whilst minimising the attack surface of the feature space.

Index Terms—adversarial learning, machine learning, network
traffic analysis

I. INTRODUCTION

Computerised systems are a feature of everyday life in all
sectors, globally, including defence, energy, finance, health,
and government. Adversaries such as criminals and advanced
persistent threats deliberately explore network vulnerabilities,
often gaining access to systems over computer networks
and causing unwanted events. The European Union Agency
for Cybersecurity [1] list common network attack scenarios
including: Web-based attacks, Denial of Service (DoS), and
Botnets. Public and private organisations must inhabit this
threat landscape. The recent SolarWinds supply chain attack
identified in December 2020 [2] [3] indicates our reliance
on intrusion detection software, and the impact of successful
attacks. Many Intrustion Detection Systems (IDS) incorporate
Machine Learning (ML) to assist automated classification of
malicious and benign traffic in a timely manner, to address
issues of dealing with large, varied, continual streams of data
and where a decision is required in minimal time.

An accurate ML model must be able to correctly classify
malicious and benign traffic, whilst also minimising potential
false positive and false negative results, which would result
in misclassification. In addition to accuracy, ML performance
can be assessed based on precision and recall. A model that
predicts malicious traffic when it is mildly confident will likely
have high recall but low precision, meaning some benign
traffic will be flagged as malicious; alternatively a model that
predicts malicious traffic only when it is certain will have low

recall and high precision, meaning that some malicious packets
will not be identified. Therefore, a trade-off between precision
and recall can often exist and be exploited.

Szegedy et al. [4] explore how imperceptible perturbations
of input values can result in significant differences in the
output of ML classifiers such as Neural Networks. Neural
network systems can therefore be susceptible to attack through
carefully-crafted inputs, known as adversarial examples (AEs)
[5]. AE are a form of evasion attack that relies on small
perturbations to the original data, often undetectable to human
observers. AEs can be algorithmically generated. Indeed there
are a selection of algorithms that produce adversarial exam-
ples, including Fast Gradient Sign Method (FGSM) [5] and
Jacobian Saliency Map Attack (JSMA), as well as available
implementations of these attacks such as CleverHans [6].

Much of the existing work on adversarial learning is applied
to computer vision tasks, such as image classification [7]-[9],
and even well-trained models such as Microsoft’s Common
Objects in Context (COCO) [10] can be susceptible to adver-
sarial attacks [11]. A fundamental issue is that images contain
a significantly large amount of data (i.e., pixels) that would
be used by the classifier - for example, a single 1080p colour
image would have over 6 million input values for a classifier.
Furthermore, subtle variations in such values would unlikely
be noticeable to humans, due to colour perception issues [12].
A primary focus of our work is how adversarial attacks against
ML classifiers translate across other domains, such as cyber
security and network traffic analysis. In effect, an attacker
could exploit the weaknesses of a modern ML-based Intrusion
Detection System (IDS) so that an attack can evade detection
and masquerade as benign activity.

In this work we study the security risks introduced through
the use of ML-based detection systems. We explore the trade-
off between ML accuracy and the classifier attack surface
based on the permitted input features provided to the classifier.
Using the CICIDS2017 dataset [13], we demonstrate a feature
selection framework that can assess how robust the ML
performance is both in terms of accuracy and vulnerability
to attack. The main contributions of this work are:

e« We consider countermeasures against algorithmically

generated AEs, and in particular FGSM.

o We demonstrate an inverse relationship between number

of features and robustness against AEs.

o We identify that applying systematic feature selection for

model training improves model robustness against AE.



II. RELATED WORK
A. Adversarial Attacks

Adversarial attacks can be classified as either white-box
or black-box. The former require an attacker to have access
to the target model’s parameters whereas the latter does not.
Black-box attacks may use a different model, or no model
at all. Black-box strategies can employ the transferability of
AEs, where AEs generated against one model can be success-
fully used to attack the target model [14]. Ayub et al. [11]
built a multi-layer perceptron supervised ML model to detect
and classify benign and malicious traffic using two distinct
network-based IDS datasets (CICIDS2017 [13] and TRAbID
[15]). They achieved outstandingly accurate classification re-
sults; however, via using Jacobian-based Saliency Map Attack
(JSMA) [16] they reduce the accuracy by 22.52% and 29.87%
on the CICIDS2017 and TRAbID datasets, respectively. Thus,
demonstrating the ease of evading network defence, and the
importance of countermeasures.

FGSM is designed to be fast rather than optimal. Therefore,
generated AEs may be based on the minimal perturbations.
For each feature the gradient of the loss function is used
to determine whether increasing or decreasing the feature’s
intensity would minimize the loss function. All features are
shifted simultaneously. Kurakin ef al. [17] refined FGSM by
taking multiple smaller steps.

Quereshi et al. [18] aim to understand the impact of AEs.
They build a random neural network-based adversarial IDS,
before training it on the NSL-KDD dataset. Subsequently they
craft AEs using JSMA and the CleverHans python library.
Their benchmark was highly accurate (95.6% benign and
96.61% DoS). Under JSMA their system accuracy fell to
47.58% for benign and a minimum of 28.10% for other
attack classes. They note the poor results under JSMA were
due to class imbalance in the benchmark data. Further they
suggest that better feature extraction techniques could improve
accuracy.

B. Architectural Defences

Lillicrap et al. [19] proposed a mechanism called feedback
alignment that introduced a separate feedback path through
random fixed synaptic weights. Gradient based attacks rely on
the quality of the gradient to determine a possible attack; the
use of feedback alignment which does not use weight transport
thus increases robustness against AEs.

Amer and Maul [20] propose modifying the architecture of
Convolutional Neural Networks (CNN) by adding a weight
map layer. Their proposed layer can be easily integrated into
existing CNNs. A weight map layer may be inserted between
other CNN layers; thus increasing the network’s robustness
to both noise and gradient-based adversarial attacks, whilst
maintaining accuracy.

Dropout is often used during training to improve test
accuracy, particularly where over-fitting is seen due to limited
training data; however, Wang et al. [21] propose defensive
dropout at test time to harden deep neural networks against

adversarial attacks. There is an inherent trade-off between
defensive use of dropout and the test accuracy; however, a
relatively small decrease in test accuracy can significantly re-
duce the attack success rate. Furthermore, larger perturbations
to evade defensive dropout could be more readily recognized
by humans.

C. Feature Selection

Hamed er al. [22] integrate feature selection into an IDS,
aiming to select the most informative features to assist in the
detection of “zero-day” attacks where few attack samples are
available. They consider Recursive Feature Addition (RFA)
and bigram technique (using two adjacent elements from a
string) training their model on the ISCX 2012 dataset. Their
objective was to find combinations of features that do not
necessarily give good accuracy results independently, but work
very well as part of a set of selected features.

Farahani [23] uses an IDS case study to propose a
novel cross-correlation-based feature selection and com-
pare it against the cuttlefish algorithm (CFA), and mutual
information-based feature selection (MIFS). The selected fea-
tures are used with four classifiers: support vector machines,
naive bayes, decision tree, and K-nearest neighbour. They
use four datasets: KDD Cup 99, NSL-KDD, AWID, and
CICIDS2017. Their results show their proposed method has
better accuracy, precision, recall, and F1-score when compared
against CFA and MIFS.

Almomani [24] proposes a feature selection model for
network IDSs utilising genetic algorithm, parallel swarm op-
timisation, and other bio-inspired algorithms to improve the
performance of network IDSs. They use the UNSW-NBI15
dataset and evaluate their selection model on support vector
machine and J48 classifiers. They show that accuracy can be
maintained with fewer features. The best results of their study
for F-measure, accuracy and sensitivity were achieved using
generated feature-sets of 30 and 13 features.

D. Visual Analytics

Legg et al. [25] studied visual analytics-based active learn-
ing as a means of assessing robustness in classifier perfor-
mance with limited samples. Such visual analytic tools can
also inform where genuine vulnerabilities in ML performance
may be introduced due to weaknesses in the training data.

Yoo et al. [26] propose an interactive visual analytics tool
to allow users to visually analyze the type, period, traffic, and
frequency of attacks answering the challenge of handling and
analyzing vast number of logs. They argue that the tool can be
useful and show how a DoS attack was successfully identified
and subsequently blocked.

E. Our Work

Most previous work aims at understanding the impact of
AEs, or improving accuracy under normal conditions some-
times using feature selections. In this work we address a
different problem of improving the robustness of ML models
against adversarial attacks.



Traffic Type Number of Samples
BENIGN 20,000
Bot 1,500
DDoS 1,500
DoS GoldenEye 1,500
DoS Hulk 1,500
DoS Slowhttptest 1,500
DoS slowloris 1,500
FTP-Patator 1,500
Heartbleed 11
Infiltration 36
PortScan 1,500
SSH-Patator 1,500
Web Attack Brute Force 1,500
Web Attack SQL Injection 21
Web Attack XSS 652

TABLE I: CICIDS2017: Traffic Types and Number of Samples

Our work utilises the relatively recent CICIDS2017 dataset.
We use Principle Component Analysis (PCA), t-Distributed
Stochastic Neighbourhood Embedding (t-SNE), Unified Man-
ifold and Projection (UMAP), and parallel co-ordinate plots to
examine the dataset. We focus on feature selection using RFE.
Our focus is on improving robustness against AE attack. We
use FGSM for its speed. We measure our model’s robustness
against AEs using accuracy. Further we consider perturbation
size to determine whether feature selection could force more
overt AEs, that could hopefully be more easily noticed by
network operations engineers.

III. METHOD

We propose a generalizable approach for examining the
robustness of features against adversarial attacks in the context
of a ML classifier. We examine characteristics of the derived
features from the data, and assess how these are manipulated
by adversarial learning attacks. Based on these observations,
we derive a feature selection approach that seeks to maintain
classifier accuracy whilst maximising the amount of feature
perturbation required to manipulate a classifier, hence improv-
ing robustness since the attack can no longer be performed in
a subtle and discrete manner.

A. Dataset

We use the CICIDS2017 dataset [13]. One advantage of this
dataset is that statistical time-related statistics have been cal-
culated for both forward flows (client to server) and backward
flows (server to client). Typical features in each flow are: Des-
tination Port, Protocol, Flow Duration, Packet Statistics, Flow
Bytes/s, Flow Packets/s, IAT Statistics, Flags, Header Length,
Down/Up Ratio, Bulk Statistics, Subflow Statistics, Init Win
bytes, act data pkt fwd, Active Statistics, and Idle Statistics.
The flows are labelled with fifteen discrete classifications of
traffic as shown in table I.

We focus on the DDoS class. To further understand the
difference between benign and malicious data features, we
use violin plots for comparative analysis to examine the
distribution of each feature for each class as shown in figures
1 and 2. All features are “Normalized” (scaled between zero
and one), and then separated by class, so that the scale factor

for each feature is comparable for each of the violin plots
shown.

Firstly, it can be seen that the distribution of features for
the benign class in figure 1 is much greater than in the
malicious case in figure 2. Furthermore, there is no visible
separation between the two classes. The malicious class is
essentially a subset within the distribution of the benign
features. Closer inspection based on calculating the numerical
difference between features suggests that inter-arrival time
(IAT) may be a distinguishing feature between the two classes.

We train a model to distinguish between benign and DDoS
traffic. In order to speed the training of the our model, we
reduce the size of the DDoS dataset and consider only the
first 50,000 samples. Through selecting this reduced number
of samples, we create a more balanced dataset with 52%
of samples labelled benign and 48% of samples labelled
DDoS. This is an improvement over the unmodified dataset
percentages (43% benign, 57% DDoS). We further clean the
dataset to remove null and not applicable data.

B. Feature Analysis

Dimensionality reduction is a common first step when
analysing datasets. For convenience the first one hundred
samples of each class in the CICIDS2017 (DDoS) dataset were
extracted and grouped as benign or malicious. We believe
this sample is sufficiently indicative. We examine the data
using dimensionality reduction methods such as PCA, t-SNE,
and UMAP, as shown in figure 3. These three methods are
commonly used for dimensionality reduction, allowing for
visualization of the data on a 2D or 3D plot. PCA [27] is a well
known algorithm that works by identifying the hyper-plane
lying closest to the data, and projecting the data onto it. Thus,
largely retaining the variation in the dataset. The t-SNE algo-
rithm [28] finds clusters in the data, reducing dimensionality
whilst aiming to keep similar instances together and dissimilar
instances apart [28]. UMAP [29] is an effective algorithm for
visualizing clusters of data points, usually providing faster and
better visualizations than t-SNE.

In the PCA plot (figure 3a) we see malicious traffic gathered
and occupying the same subspace as benign traffic, showing
the complexity of the classification problem. More sophisti-
cated methods such as t-SNE (figure 3b) and UMAP (figure
3c) begin to identify the clustering of the two classes in greater
detail, however even so, it is noticeable that there is no clear
single cluster associated with either class. This is an important
observation as there is no single definition of what makes for
benign or malicious traffic in respect to the features being
studied within the dataset.

C. Parallel Co-ordinates

Therefore, we considered examining the raw features rather
than the dimensionally reduced form. We identified IAT fea-
tures as potentially good indicators of DDoS traffic, and chose
to plot the features as parallel coordinates as seen in figure 4.

We select the subset of features that contain the text ‘IAT’,
and use a parallel coordinates plot to examine the relationship



=

Violin Plot to show benign feature distributions

+—

I

£ §3 8 £ § 3 5§ % E £ % 52 EE L FZESE BEEEGEGVGS £ E £ £ o2 8 8 - § B 8 £ §
I 2 § R 53 2 BB K - 5§ 3 H EI-I - £ 8 % A §
LR - T F: 5 ¢ 3 Pz ?gos gz foyoyd g & [ Eroa oy 3 g €8 %=
T 2% 3 82 % g = e w2 - | LR - 3 H Eow & F % I
IFEEERER B R a S fdreiEs s Q3
& 5 & F & 5 & 2k i T & 2 3 2 5 3 £ ¢
TS 2z o:oz OB = £ < 2 9 £ I el
M.E‘Lmn:rg‘ﬂ a2 EE
Fig. 1: A violin plot of the distribution of benign features. This violin plot shows the distribution of benign features.
Violin Plot to show DDas feature distributions

l ‘ b . .H\’ N — - L1
£ 53 5 £ 3§ 2 T E §F §Z2EEEFZREEREG G 5 gor oy IR - 5§25 £ §
S 5 4 2 5 § @ s £ = B § & 2 £ § 3 5 2 5 2 8 B ¥ & a8 £ % 2 5 oz g & & 5 §
- - 83 333 2 3P EPzz Eizeopoxs 8 & E £z o g & § 48 2=
¥ 4 3 3 & 2 % 2wz E = - & & 2 5 § F R g = 3 3 &
% 0§ % ¥ 5 @ w =z g o= = £ % 2 &5 3
P & B & 5 & - T F 2 2 £ 5 g
& 3 & & % £ 2 & a @ F £
IR EEEE @ i3y ER-
£ &8s o8 L =

2|
4a

. 2: A violin

le8

plot of the distribution

2 Component PCA: Network IDS

of DDoS features.

TSNE: Network IDS

This violin plot shows the

distribution of DDoS features.

UMAP: Network IDS

100

. Benign
L] ® Malicious 75

1.0
50

05 =

0.0

Principal Component 2
°
L]
L]
Principal Component 2
°

Benign
@ Malicious

fo

o ®

Principal Component 2

05 10 15 2.0
Principal Component 1

(a) PCA

-0.5 0.0
les

Principal Component 1

(b) t-SNE

-5 0 5 10
Principal Component 1

(c) UMAP

50 100 -10

Fig. 3: Dimensionality reduction methods to examine the clustering relationship between benign and malicious classes.

between the two classes further. In figure 4 each plotline
represents an individual instance from the dataset. We believe
this plot provides a clearer depiction between the two classes
from the initial overview of the feature distribution.

Having identified some features as better indicators of
DDoS traffic. We perform an initial study on accuracy and
Mean-Squared Error (MSE). Further, we propose feature selec-
tion as a method to improve the classification accuracy against
FGSM adversarial attacks. We consider Recursive Feature
Elimination (RFE) [30], removing those features with the
largest absolute difference under FGSM attack.
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Fig. 4: A parallel coordinates plot of the distribution of benign
features and DDoS affected by FGSM.

D. Training The Model

We adapted the CICIDS2017 dataset and trained a binary
classifier to discriminate between benign and DDoS traffic.



We trained the model using shuffled stratified k-fold (kK = 5),
giving confidence of the validity of our results. We select a k
value of 5 aiming to strike a balance between long run times
and reduced sample bias. Each iteration was trained with a
80/20 training/test split, showing excellent results (100.00%
+/- 0.00%). We consider this well trained model as a baseline;
we compare our results against this baseline. We applied
FGSM to generate AEs from the DDoS samples, again using
k-fold (k = 5). Such AEs significantly reduce the accuracy of
the classifier, yielding an accuracy of 58.57% (+/-) 15.03%.
Using our trained model with x features we perform FGSM,
and assess the perturbation of each of the features. We remove
the feature with largest perturbation and retrain the classifier
with x—1 features. We found the optimal solution, maximising
accuracy.
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Fig. 5: Features arranged as per original dataset.

IV. RESULTS AND DISCUSSION

Here we describe and discuss our findings. First we discuss
our findings from our initial accuracy and Mean-Square Error
study, followed by our findings from our recursive feature
elimination experiments.

Figure 5a shows that the model achieves good accuracy
(rarely falls below 90%) with fewer features. The model is
most accurate when most features are used; however, accuracy
under attack rarely exceeds 60%. Showing a well-trained

model is susceptible to adversarial attacks such as FGSM. The
graphs show an increase in accuracy under normal conditions
often correlates with a decrease in accuracy under attack. We
note that when Fwd Inter-Arrival (IAT) Total (feature 18) is
included, the accuracy under attack improves slightly as shown
by a minor peak in accuracy of over 0.5. We consider this
accuracy boost a result of the inherent short IAT of DDoS
traffic, strongly indicating DoS traffic.

Figure 5b shows the size of perturbation required for a
successful attack. The size of perturbation tends to reduce as
more features are included. The addition of features increases
the attack surface, and allows more subtle adversarial pertur-
bations. The classification results of such systems has serious
consequences. Adversaries able to skew the classification
accuracy of systems can leverage an advantage by making
malicious conditions appear benign. As previously seen with
accuracy, we note an increase in perturbation size when Fwd
Inter-Arrival (IAT) Total (feature 18) is included. This feature
strongly indicates DDoS traffic. We consider the inclusion of
important features for classification may also force increases
in perturbation size. This in turn means an attack must be more
overt.
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Fig. 6: Features arranged from most to least important.
We now consider our experiments with feature-set arranged

in order of importance. Figure 6a shows a binary classifier
where features have been sorted according to the extracted



No. Name
Total_Length_of_Fwd_Packets

Length of Forward Packets

1

2 _CWE_Flag_Count Congestion Window Flag

3 _Fwd_Packet_Length_Max Max Forward Packet Length

4 _Bwd_Avg_Bytes/Bulk Average No. Backward Bytes/Bulk

5 Subflow_Fwd_Packets Number of Forward Packets in a Subflow
6 _Flow_IAT_Max Maximum Inter-Arrival for a flow

7 _Subflow_Bwd_Packets No. Backward Packets in Subflow

8 _Total_Fwd_Packets Total Forward Packets

9 _Flow_IAT_Mean Mean Inter-Arrival

10 Fwd_PSH_Flags
1 _Down/Up_Ratio
12 _Source_Port

13 Protocol

Forward Push Flag
Down/Up Ratio
Source Port
Protocol

14 _Fwd_Packet_Length_Min Minimum Forward Packet Length

15 _Flow_IAT_Std Inter-Arrival Standard Deviation for flow

16 _Flow_IAT_Min Minimum Inter-Arrival Standard Deviation for flow
17 _URG_Flag_Count Urgent flag count

18 _Fwd_Avg_Bulk_Rate Average No. Forward Bytes/Bulk

19 _Subflow_Fwd_Bytes No. forward bytes in subflow

20 _Bwd_Packet_Length_Min Minimum backward packet length

TABLE II: Feature-set of 20 most important features.

feature importance. We note with fewer than five features the
model predicts the class incorrectly around 40% of the time.
This is a poor binary prediction model. The binary FGSM
attack aims to flip the recognized class. Therefore for poor
classifiers the accuracy can curiously increase under FGSM
attack. As more features are included, the accuracy wavers
depending on specific properties of those features. We observe
a roughly inverse relationship between accuracy and the accu-
racy under FGSM attack. Where accuracy falls, this coincides
with an increase in accuracy under attack and vice versa.
We use this graph to determine a set of features providing
good accuracy under FGSM attack, whilst retaining acceptable
accuracy under normal conditions. We find a promising peak
at feature 20 (_Bwd_Packet_Length_Min). The cumulative
feature-set of 20 most important features is shown in table
II.

This feature-set provides good accuracy under FGSM
attack, whist maintaining acceptable accuracy under nor-
mal conditions. Focusing our attention either side of
this peak we note drops in accuracy with the removal
of _Bwd_Packet_Length_Min (19 features), or the addi-
tion of _Flow_Duration (21 features). The inclusion of
_Bwd_Packet_Length_Min (20 features) gives a local max-
ima for accuracy under FGSM attack. Whilst maintain-
ing good accuracy (= 85%) under normal conditions. The
_Bwd_Packet_Length_Min feature may indicate DDoS traffic
through the size of returned packets. Each feature in isolation
may not be an excellent indicator of DDoS traffic; however
in combination a distinct pattern may emerge. For example,
a ping flood attack is performed by quickly sending a large
multiple of small request packets gaining an equal number
of response packets. Packet Length, Number of packets, IAT,
and Down/Up Ratio when combined could reveal such traffic.
These features are well represented in our generated feature-
set (table II).

Figure 6b shows the accompanying plot of the perturbation
size by number of features, resembling an imperfect saw tooth.
We use this graph to determine a feature-set maximising the
perturbation size of successful FGSM attacks. Our plot shows
relatively small perturbations are necessary until a significant
spike occurs with _Source_Port (feature 12), followed by a
gradual decline until another spike at _Subflow_Bwd_Bytes

(feature 40). Further peaks and gradual declines are seen with
_Packet_Length_Variance (feature 50) and _Bwd_IAT_Min
(feature 70). Again, individual features may have an ef-
fect; however we consider grouping features in a cumulative
feature-set effects the perturbation size more. We note that
the maximum size of perturbation is smaller when using
our feature-set sorted by feature importance (0.05) compared
against the maximum perturbation of our original (unsorted)
feature-set (0.30). The cumulative feature-set detailed in table
IT peaks with _Source_Port (feature 12). Looking either side
of this feature we note the removal of _Down/Up_Ratio or
the addition of _Protocol. The inclusion of _Source_Port
gives a local maxima for MSE (>0.05). We further note that
the cumulative feature-set of 20 features yields a relatively
high MSE (= 0.04); however, this value is much lower than
the MSE yielded by our original feature-set. The MSE is
decreased in our sorted feature-set. The improved accuracy
under FGSM attack is an effect of selecting and grouping
features. Forced increases in perturbation size may also have
a smaller effect.

A. Feature Selection

There are many types of feature importance, which highlight
which features may be most/least relevant. Through identifying
the relevance of features insights can be gleaned on the dataset
and model. We use these insights to improve our predictive
model, by discarding features more susceptible to FGSM
attack. It is known that reducing the number of features can
yield benefits including: reduced time required to train a model
[31], improved accuracy, and reduced execution time [24]. We
further explore whether robustness can be improved through
feature selection. Three common methods for determining
feature importance are: model coefficients, decision trees and
permutation testing. Our focus is on the latter.

Now we discuss our findings from our RFE experiments.
Figure 7 shows plots of accuracy and average perturbation per
feature. In FGSM the adversarial “noise” is scaled by a small
number (epsilon). The plots illustrate the effect of FGSM on
accuracy for different values of epsilon (¢). The negative effect
on classification accuracy increases with the size of e. For
€ = 0.10 and € = 0.15 accuracy for the original dataset near
50%. It should be noted that for binary classification tasks an
accuracy of 50% equates to a random guess. For all values of
epsilon we see an incremental increase in robustness against
FGSM. Such AEs can be successfully mitigated with feature
selection. Where ¢ = 0.05 a feature-set of approximately 50
features is sufficient to negate the effects of FGSM. Where
€ = 0.10 a feature-set of approximately 20 features is sufficient
to negate the effects of FGSM. Whereas for € = 0.15 a feature
set of approximately 20 features is unable to fully negate the
effect of FGSM.

All values of € show a similar trend of increased average
perturbation per feature; however, we note that as e increases
the average perturbation per feature decreases. This can be
explained if perturbations are unevenly distributed across fea-
tures. Large perturbations of a small set of features and small



110 100
105 —— Accuracy | |
—— FGSM )
I 100 0
! 1l
100
%
T ®
>
>
g = P g
8 g g
El H g 0
2
B
4 g 0]
&0
60
& 50{ =
5y { —H Accuracy Accuracy
—+— FesM —H FasM
80
o - pa . s T 20 B 20 0 & 7 0 0 a0 50 60 0
Features Features ,FEatUES
- — 000055 s 0.0008 — MSE
0.000350
0.00050
0000325 0.0007
0.00045
0000300
00006
., 0.000275 ., 000040 u
A A
= =
= n000250 000035 0.0005
0000225 200030 oo
0.000200 :
0.00025
0.000175 00003
0.00020
bl 1 40 50 0 0 0 0 50 60 L] 20 0 40 50 &0 0

Features

(a) Accuracy(top) and Average perturba-
tion size per feature(bottom) € = 0.05

(b) Accuracy(top) and Average perturba-
tion size per feature(bottom) € = 0.10

Features Features

(c) Accuracy(top) and Average perturba-
tion size per feature(bottom): € = 0.15
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or no perturbations on other features give smaller average
perturbations for the sample.

We have shown that feature selection can improve classifica-
tion accuracy under adversarial conditions. We used a DDoS
case study using the CICIDS2017 dataset. We have shown
improvement of FGSM accuracy by recursively removing fea-
tures most susceptible to large perturbations from the training
set. Our research shows an improvement from 58.57% +/-
15.03 to 78.63 % +/- 8.23 (results at the edge of the standard
deviation indicate FGSM accuracy 86.86%) with no drop in
accuracy for unperturbed samples.

B. Parallel Co-ordinates

Our parallel-coordinates plot in figure 4 shows that DDoS
features modified by FGSM fall within the distribution of
benign traffic for these features. It is clear that benign and
malicious traffic cannot be separated based solely on the range
of their features. Instead we theorise that the correlations
between features can help separate benign and malicious
traffic. Significantly a pattern of peaks and troughs emerge
from the FGSM distribution. We theorise that this pattern is
more easily concealed in large feature sets where such patterns
may be harder to detect.

C. Future Work

We focus on fooling the intrusion detection algorithms,
deploying FGSM [17] to produce adversarial examples; how-
ever certain features must remain unchanged. For example,
destination address and port number must remain unchanged,
ensuring the packet is delivered to the target. Furthermore, in
network traffic features must remain within reasonable bounds
in order to remain inconspicuous. Moreover, many features
should ideally remain intrinsically consistent within packets.

In other words, counts and other statistics should remain
logical and true. Adversaries can control other features and
could reasonably and readily change packet length. Successful
attacks should constrain which features can be modified in
generated adversarial examples. The excellent accuracy results
we observed could potentially be a sign of over-fitting which
we will consider in future work. We also seek to explore the
robustness benefit gained through use of multiple separately
trained ML models, perhaps combining them into an ensemble
classifier. An investigation into whether an ensemble classifier
such as a Random Forest provide greater robustness against
adversarial examples. Furthermore, investigation into the trans-
ferability of attacks between an Artificial Neural Network
(ANN) model and a random forest will be explored. This
will be used to determine to what extent our defences are
susceptible to transfer attacks.

So far we have examined binary classification. The multi-
class problem is more complex. A multi-class classifier must
determine which of many classes a suspect sample belongs.
Moreover, an adversary can choose the target class for an
adversarial example. This could be advantageous: a network
analyst would certainly treat a DDoS attack differently than a
BotNet or infiltration attempt. Adversaries could gain signifi-
cant advantage through camouflaging an infiltration attack as
a comparatively less serious network intrusion.

V. CONCLUSION

We have demonstrated a generalisable approach for as-
sessing the vulnerability and robustness of features in a
ML context. In particular, adversarial ML attacks seek to
identify subtle perturbations of features that can result in
mis-classification. Our approach provides researchers with a
suitable methodology for assessing how susceptible features



may be towards perturbation attacks, and how we can system-
atically remove vulnerable features to simultaneously maintain
acceptable classifier accuracy whilst eliminating features that
may introduce subtle attack vectors. To demonstrate the con-
cept, we applied our approach to a network traffic classification
task to distinguish between malicious DDoS activity and
benign traffic behaviours. We successfully use feature selection
to achieve improvement in accuracy under FGSM attack.
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